Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1949    Accepted Submission(s): 911

Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 
Input
Input a length L (0 <= L <= 10 6) and M.
 
Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 
Sample Input
3 8
4 7
4 8
 
Sample Output
6
2
1
 
Author
WhereIsHeroFrom
 
Source
 
Recommend
lcy
 

首先,这是一个递推问题。mm结尾的只能由fm结尾的或者mm结尾的推来。以mf结尾的只能由mm结尾的推来,以fm结尾的只能由mf或者ff推来,以ff结尾的只能由mf推来。

F(n)=F(n-1)+F(n-3)+F(n-4)。可是正常用大数的话会TLE。后来查阅DISCUSS得知应该使用矩阵乘法。

(設f(n)為字符串為n時符合條件的字符串個數。
以字符串最後一個字符為分界點,當最後一個字符為m時前n-1個字符沒有限制,即為f(n-1);
當最後一個字符為f時就必須去除最後3個字符是fmf和fff的情況,此時最後三個字符可能為mmf和mff,
當後三個字符為mmf時,前n-3個字符沒有限制,即為f(n-3);
但是當後三個自負為mff時,後四個字符必須為mmff時前n-4個字符無限制,即為f(n-4)。
這樣就討論完了字符串的構成情況了,得出結論為:f(n) = f(n-1) + f(n-3) + f(n-4).   )

其中1——4是已知的。

其中这个A矩阵是要构建的,一般是通过0-1阵,达到下图的目的,构阵方式不唯一。

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int n,mod; struct Matrix{
int arr[][];
}; Matrix unit,init; Matrix Mul(Matrix a,Matrix b){
Matrix c;
for(int i=;i<;i++)
for(int j=;j<;j++){
c.arr[i][j]=;
for(int k=;k<;k++)
c.arr[i][j]=(c.arr[i][j]+a.arr[i][k]*b.arr[k][j]%mod)%mod;
c.arr[i][j]%=mod;
}
return c;
} Matrix Pow(Matrix a,Matrix b,int k){
while(k){
if(k&){
b=Mul(b,a);
}
a=Mul(a,a);
k>>=;
}
return b;
} void Init(){
for(int i=;i<;i++)
for(int j=;j<;j++){
init.arr[i][j]=;
unit.arr[i][j]=;
}
unit.arr[][]=, unit.arr[][]=, unit.arr[][]=, unit.arr[][]=; init.arr[][]=, init.arr[][]=, init.arr[][]=, init.arr[][]=,
init.arr[][]=, init.arr[][]=;
} int main(){ //freopen("input.txt","r",stdin); Init();
while(~scanf("%d%d",&n,&mod)){
if(n<=){
if(n==)
printf("");
else if(n==)
printf("%d\n",%mod);
else if(n==)
printf("%d\n",%mod);
else if(n==)
printf("%d\n",%mod);
else if(n==)
printf("%d\n",%mod);
continue;
}
Matrix res=Pow(init,unit,n-);
printf("%d\n",res.arr[][]%mod);
}
return ;
}

HDU 2604 Queuing (矩阵乘法)的更多相关文章

  1. HDU 2604 Queuing 矩阵高速幂

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. HDU 2604 Queuing,矩阵高速幂

    题目地址:HDU 2604 Queuing 题意:  略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] ...

  3. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  4. HDU 2604 Queuing(矩阵高速幂)

    题目地址:HDU 2604 这题仅仅要推出公式来,构造矩阵就非常easy了.问题是推不出公式来..TAT.. 从递推的思路考虑.用f(n)表示n个人满足条件的结果.假设最后一个是m则前n-1人能够随意 ...

  5. hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)

    题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...

  6. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  8. HDU 2604 Queuing(矩阵快速幂)

    题目链接:Queuing 题意:有一支$2^L$长度的队伍,队伍中有female和male,求$2^L$长度的队伍中除 fmf 和 fff 的队列有多少. 题解:先推导递推式:$f[i]=f[i-1] ...

  9. HDU 2604 Queuing(递推+矩阵)

    Queuing [题目链接]Queuing [题目类型]递推+矩阵 &题解: 这题想是早就想出来了,就坑在初始化那块,只把要用的初始化了没有把其他的赋值为0,调了3,4个小时 = = 本题是可 ...

随机推荐

  1. python各个模块循环引用问题解决办法

    当项目中的模块过多,或功能划分不够清晰时会出现循环引用的问题,如下 有两个模块moduleA 和 moduleB: #moduleA from moduleB import b def a(): pr ...

  2. Objective-C:Objective-C:文件中一些对目录进行操作的函数

    IO文件中,一些对目录进行操作的函数:获取.切分.组合 一些对目录进行操作的函数: 获取用户的姓名:(NSString*)NSUserName() ;    ———>NSString *Str ...

  3. WF4.0(1)---WorkFlow简介

    编程编的越久就发现自己以前的语文真的没学好,写个随笔取个名字都需要思考半天,以前工作的时候只是听说过工作流,知道的范围仅限于工作流在OA审批流程中用的比较多,现在自己实实在在的用工作流也做过不少项目, ...

  4. Android -- MeasureSpec

    自定义控件都会去重写View的onMeasure方法,因为该方法指定该控件在屏幕上的大小. protected void onMeasure (int widthMeasureSpec, int he ...

  5. Android -- ViewPager放入多个XML监听每个的控件

    我这这里就用了两个imageButton的监听器,两个XML上分别一个. 昨天做了个Viewpager,今天想试试在上面弄上Button试试,结果,弄不来,然后查文档,没查到...百度了1个多小时才出 ...

  6. 【架构】SpringCloud 注册中心、负载均衡、熔断器、调用监控、API网关示例

    示例代码: https://github.com/junneyang/springcloud-demo 参考资料: SpringCloud系列 Eureka 一句话概括下spring框架及spring ...

  7. 向第一个 p 元素添加一个类

    This is a heading This is a paragraph. This is another paragraph. 向第一个 p 元素添加一个类 111 <html> &l ...

  8. Python源代码 -- C语言实现面向对象编程(基类&amp;派生类&amp;多态)

    背景 python是面向对象的解释性语言.然而python是通过C语言实现的,C语言怎么跟面向对象扯上了关系? C语言能够实现面向对象的性质? 原文链接:http://blog.csdn.net/or ...

  9. 将Tp-link无线路由器桥接到Dlink无线路由器上

    笔者家中原有两台笔记本和两台IPad,通过一台Dlink无线路由器(型号DIR-612,以下简称Dlink)上网,Dlink以PPPOE方式连到小区宽带.一直还可以. 后来为了练习Linux,启用了一 ...

  10. mysql字符集说明

    mysql字符集说明 一.mysql中涉及的几个字符集 Ø character-set-server/default-character-set:服务器字符集,默认情况下所采用的. Ø charact ...