innodb 的聚集索引 的叶子结点 存放的 是 索引值以及数据页的偏移量

那么在计算全表扫描的代价是怎么计算的呢?

我们知道代价 为 cpu代价+io代价

cpu代价 就是 每5条记录比对 计算一个代价 (这里的记录并不是我们数据记录,而是索引记录) 是数据记录个数

又是如何取出全表的总记录呢 (即全表的总索引记录)

具体方法是 通过索引能拿到叶子结点的page数,page页默认16K ,那么总容量为 leaf page num * 16k

再计算这个索引的长度,因为索引可能是由多个字段构成,因此要遍历,假设为 m

total_records = leaf page num * 16k /m 就是 索引记录个数了, 一条聚焦索引记录对应一条数据记录,所以这里是总的记录数

还是有问题 这个leaf page是数据页,而m是主键的长度,上面的total_records计算出来的结果 并不是准确的记录个数,按理说m为一条记录的长度,但代码里是主键的长度

那么cpu cost 就是 total_records/5+1

  io cost 就是  (double) (prebuilt->table->stat_clustered_index_size(聚簇索引叶页面数);

/******************************************************************//**
Calculate the time it takes to read a set of ranges through an index
This enables us to optimise reads for clustered indexes.
@return estimated time measured in disk seeks */
UNIV_INTERN
double
ha_innobase::read_time(
/*===================*/
uint index, /*!< in: key number */
uint ranges, /*!< in: how many ranges */
ha_rows rows) /*!< in: estimated number of rows in the ranges */
{
ha_rows total_rows;
double time_for_scan; if (index != table->s->primary_key) {
/* Not clustered */
return(handler::read_time(index, ranges, rows));
} if (rows <= ) { return((double) rows);
} /* Assume that the read time is proportional to the scan time for all
rows + at most one seek per range. */ time_for_scan = scan_time(); //estimate_rows_upper_bound这里就是计算全表总记录的函数
if ((total_rows = estimate_rows_upper_bound()) < rows) { return(time_for_scan);
} return(ranges + (double) rows / (double) total_rows * time_for_scan);
} /*********************************************************************//**
Gives an UPPER BOUND to the number of rows in a table. This is used in
filesort.cc.
@return upper bound of rows */
UNIV_INTERN
ha_rows
ha_innobase::estimate_rows_upper_bound(void)
/*======================================*/
{
dict_index_t* index;
ulonglong estimate;
ulonglong local_data_file_length;
ulint stat_n_leaf_pages; //取得该表的第一个索引,就是聚集索引
index = dict_table_get_first_index(prebuilt->table); //聚焦索引的叶子结点个数
stat_n_leaf_pages = index->stat_n_leaf_pages; //大小为 叶子结点个数*16k
local_data_file_length = ((ulonglong) stat_n_leaf_pages) * UNIV_PAGE_SIZE; /* Calculate a minimum length for a clustered index record and from
that an upper bound for the number of rows. Since we only calculate
new statistics in row0mysql.c when a table has grown by a threshold
factor, we must add a safety factor 2 in front of the formula below. */ //计算这个聚集索引的大小
// 2* 总叶子个数*16K / 聚焦索引大小 得到聚集索引记录个数
estimate = * local_data_file_length /
dict_index_calc_min_rec_len(index); DBUG_RETURN((ha_rows) estimate);
} /*********************************************************************//**
Calculates the minimum record length in an index. */
UNIV_INTERN
ulint
dict_index_calc_min_rec_len(
/*========================*/
const dict_index_t* index) /*!< in: index */
{
ulint sum = ;
ulint i; //记录为compack 紧凑模式,因为有可能这个索引是由多个字段组成,要遍历,求出总字节数
ulint comp = dict_table_is_comp(index->table); if (comp) {
ulint nullable = ;
sum = REC_N_NEW_EXTRA_BYTES;
for (i = ; i < dict_index_get_n_fields(index); i++) {
const dict_col_t* col
= dict_index_get_nth_col(index, i);
ulint size = dict_col_get_fixed_size(col, comp);
sum += size;
if (!size) {
size = col->len;
sum += size < ? : ;
}
if (!(col->prtype & DATA_NOT_NULL)) {
nullable++;
}
} /* round the NULL flags up to full bytes */
sum += UT_BITS_IN_BYTES(nullable); return(sum);
}
}

结构体dict_index_t

/** InnoDB B-tree index */
typedef struct dict_index_struct dict_index_t; /** Data structure for an index. Most fields will be
initialized to 0, NULL or FALSE in dict_mem_index_create(). */
struct dict_index_struct{
index_id_t id; /*!< id of the index */
mem_heap_t* heap; /*!< memory heap */
const char* name; /*!< index name */
const char* table_name;/*!< table name */
dict_table_t* table; /*!< back pointer to table */ //
#ifndef UNIV_HOTBACKUP
unsigned space:;
/*!< space where the index tree is placed */
unsigned page:;/*!< index tree root page number */
#endif /* !UNIV_HOTBACKUP */
unsigned type:DICT_IT_BITS;
/*!< index type (DICT_CLUSTERED, DICT_UNIQUE,
DICT_UNIVERSAL, DICT_IBUF, DICT_CORRUPT) */
#define MAX_KEY_LENGTH_BITS 12
unsigned trx_id_offset:MAX_KEY_LENGTH_BITS;
/*!< position of the trx id column
in a clustered index record, if the fields
before it are known to be of a fixed size,
0 otherwise */
#if (1<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
# error (<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
#endif
unsigned n_user_defined_cols:;
/*!< number of columns the user defined to
be in the index: in the internal
representation we add more columns */
unsigned n_uniq:;/*!< number of fields from the beginning
which are enough to determine an index
entry uniquely */
unsigned n_def:;/*!< number of fields defined so far */
unsigned n_fields:;/*!< number of fields in the index */
unsigned n_nullable:;/*!< number of nullable fields */
unsigned cached:;/*!< TRUE if the index object is in the
dictionary cache */
unsigned to_be_dropped:;
/*!< TRUE if this index is marked to be
dropped in ha_innobase::prepare_drop_index(),
otherwise FALSE. Protected by
dict_sys->mutex, dict_operation_lock and
index->lock.*/
dict_field_t* fields; /*!< array of field descriptions */
#ifndef UNIV_HOTBACKUP
UT_LIST_NODE_T(dict_index_t)
indexes;/*!< list of indexes of the table */
btr_search_t* search_info; /*!< info used in optimistic searches */
/*----------------------*/
/** Statistics for query optimization */
/* @{ */
ib_int64_t* stat_n_diff_key_vals;
/*!< approximate number of different
key values for this index, for each
n-column prefix where n <=
dict_get_n_unique(index); we
periodically calculate new
estimates */
ib_int64_t* stat_n_non_null_key_vals;
/* approximate number of non-null key values
for this index, for each column where
n < dict_get_n_unique(index); This
is used when innodb_stats_method is
"nulls_ignored". */
ulint stat_index_size;
/*!< approximate index size in
database pages */

ulint stat_n_leaf_pages;
/*!< approximate number of leaf pages in the
index tree */

/* @} */
rw_lock_t lock; /*!< read-write lock protecting the
upper levels of the index tree */
trx_id_t trx_id; /*!< id of the transaction that created this
index, or 0 if the index existed
when InnoDB was started up */
#endif /* !UNIV_HOTBACKUP */
#ifdef UNIV_BLOB_DEBUG
mutex_t blobs_mutex;
/*!< mutex protecting blobs */
void* blobs; /*!< map of (page_no,heap_no,field_no)
to first_blob_page_no; protected by
blobs_mutex; @see btr_blob_dbg_t */
#endif /* UNIV_BLOB_DEBUG */
#ifdef UNIV_DEBUG
ulint magic_n;/*!< magic number */
/** Value of dict_index_struct::magic_n */
# define DICT_INDEX_MAGIC_N
#endif
};

mysql优化器在统计全表扫描的代价时的方法的更多相关文章

  1. MySQL查询优化:LIMIT 1避免全表扫描

    在某些情况下,如果明知道查询结果只有一个,SQL语句中使用LIMIT 1会提高查询效率. 例如下面的用户表(主键id,邮箱,密码): create table t_user(id int primar ...

  2. 记录一次没有收集直方图优化器选择全表扫描导致CPU耗尽

    场景:数据库升级第二天,操作系统CPU使用率接近100%. 查看ash报告: 再看TOP SQL 具体SQL: select count(1) as chipinCount, sum(bets) as ...

  3. SQL SERVER中关于OR会导致索引扫描或全表扫描的浅析

    在SQL SERVER的查询语句中使用OR是否会导致不走索引查找(Index Seek)或索引失效(堆表走全表扫描 (Table Scan).聚集索引表走聚集索引扫描(Clustered Index ...

  4. SQL SERVER中关于OR会导致索引扫描或全表扫描的浅析 (转载)

    在SQL SERVER的查询语句中使用OR是否会导致不走索引查找(Index Seek)或索引失效(堆表走全表扫描 (Table Scan).聚集索引表走聚集索引扫描(Clustered Index ...

  5. MySql避免全表扫描【转】

    原文地址:http://blog.163.com/ksm19870304@126/blog/static/37455233201251901943705/ 对查询进行优化,应尽量避免全表扫描,首先应考 ...

  6. Mysql避免全表扫描sql查询优化 .

    对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引: .尝试下面的技巧以避免优化器错选了表扫描: ·   使用ANALYZE TABLE tbl_n ...

  7. MySql避免全表扫描

    对查询进行优化,应尽量避免全表扫描,首先应考虑在where 及order by 涉及的列上建立索引: .尝试下面的技巧以避免优化器错选了表扫描: · 使用ANALYZE TABLE tbl_name为 ...

  8. 【转】避免全表扫描的sql优化

    对查询进行优化,应尽量避免全表扫描,首先应考虑在where 及order by 涉及的列上建立索引: .尝试下面的技巧以避免优化器错选了表扫描:· 使用ANALYZE TABLE tbl_name为扫 ...

  9. 避免全表扫描的sql优化

    对查询进行优化,应尽量避免全表扫描,首先应考虑在where 及order by 涉及的列上建立索引:  .尝试下面的技巧以避免优化器错选了表扫描: ·   使用ANALYZE TABLE tbl_na ...

随机推荐

  1. jquery validate 之多tab页同时校验问题

    1.设置多tab页同时校验: $("form").validate({ignore: ":hidden", ignore: ""}); 由于 ...

  2. linux 硬盘分区攻略

    以下的sdX代表硬盘分区(如sda1,sda2,sdb1...等等),如果已有的硬盘分区需要改变大小的话,请参考另一篇文章. /boot:开机用的磁盘空间了,至少78MB,一般给100MB就好了. / ...

  3. Nginx的使用(反向代理,负载均衡)

    在我目前的工作内容中,接触到Nginx的用处无外乎两点: 1. 反向代理,解决前端跨域的问题 工作内容有门户的概念,就是将各个子系统集成到门户里,在门户里面访问,这样就很容易造成跨域的问题 那么解决的 ...

  4. 【Unity】1.2 HelloWorld--测试桌面和Android游戏能否正常运行

    分类:Unity.C#.VS2015 创建日期:2016-03-23 一.简介 这一节先搞一个最简单的Unity游戏,目的是为了验证Unity的桌面游戏开发环境和Android游戏开发环境是否有问题. ...

  5. Redis为什么是单线程

    转自:https://www.zhihu.com/question/23162208 https://www.zhihu.com/question/55818031:加了一些个人的理解. Redis为 ...

  6. MATLAB实现最优低通滤波器的函数

    MATLAB实现最优低通滤波器的函数 % Fs     --Data rate % Fpass  --pass band % Fstop  --Cutoff frequencies % Apass  ...

  7. hibernate中常用的Hql语句总结

    // HQL: Hibernate Query Language. // 特点: // >> 1,与SQL相似,SQL中的语法基本上都可以直接使用. // >> 2,SQL查询 ...

  8. INNER JOIN与LEFT JOIN在SQL Server的性能

    我创建了INNER JOIN 9桌,反正需要很长的(超过五分钟).所以,我的民歌改变INNER JOIN来LEFT JOIN LEFT JOIN的性能较好,在首次尽管我所知道的.之后我变了,查询的速度 ...

  9. char、varchar、nchar、nvarchar特点比较

    于程序中的string型字段,SQLServer中有char.varchar.nchar.nvarchar四种类型来对应(暂时不考虑text和ntext),开建立数据库中,对这四种类型往往比较模糊,这 ...

  10. NSUserDefaults用法详解

    一.了解NSUserDefaults以及它可以直接存储的类型 NSUserDefaults是一个单例,在整个程序中只有一个实例对象,他可以用于数据的永久保存,而且简单实用,这是它可以让数据自由传递的一 ...