[BinaryTree] AVL树、红黑树、B/B+树和Trie树的比较
转自:AVL树、红黑树、B/B+树和Trie树的比较
AVL树
最早的平衡二叉树之一。AVL是一种高度平衡的二叉树,所以通常的结果是,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果场景中对插入删除不频繁,只是对查找特别有要求,AVL还是优于红黑的。
使用场景:Windows对进程地址空间的管理用到了AVL树。
红黑树
平衡二叉树,通过对任何一条从根到叶子的简单路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。用于搜索时,插入删除次数多的情况下我们就用红黑树来取代AVL。
使用场景
- 广泛用在C++的STL中。map和set都是用红黑树实现的
- 著名的linux进程调度Completely Fair Scheduler,用红黑树管理
- 进程控制块
- epoll在内核中的实现,用红黑树管理事件块
- nginx中,用红黑树管理timer等
- Java的TreeMap实现
B树、B+树
它们特点是一样的,是多路查找树,一般用于数据库系统中,为什么,因为它们分支多层数少呗,都知道磁盘IO是非常耗时的,而像大量数据存储在磁盘中所以我们要有效的减少磁盘IO次数避免磁盘频繁的查找。
使用场景
- 主要用在文件系统以及数据库中做索引等,比如Mysql:B-Tree Index in MySql
- 像mysql的数据库定义是可以指定B+ 索引还是hash索引。
Trie树
又名单词查找树,一种树形结构,常用来操作字符串。它是不同字符串的相同前缀只保存一份。相对直接保存字符串肯定是节省空间的,但是它保存大量字符串时会很耗费内存。
类似的有前缀树(prefix tree),后缀树(suffix tree),radix tree(patricia tree, compact prefix tree),crit-bit tree(解决耗费内存问题),以及前面说的double array trie。
使用场景
- 字符匹配
前缀树:字符串快速检索,字符串排序,最长公共前缀,自动匹配前缀显示后缀。
后缀树:查找字符串s1在s2中,字符串s1在s2中出现的次数,字符串s1,s2最长公共部分,最长回文串。
radix tree:linux内核,nginx。 - IP选路
也是前缀匹配,一定程度会用到trie
[BinaryTree] AVL树、红黑树、B/B+树和Trie树的比较的更多相关文章
- 树:BST、AVL、红黑树、B树、B+树
我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操 ...
- AVL树,红黑树
AVL树 https://baike.baidu.com/item/AVL%E6%A0%91/10986648 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高 ...
- 浅谈AVL树,红黑树,B树,B+树原理及应用(转)
出自:https://blog.csdn.net/whoamiyang/article/details/51926985 背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上 ...
- 浅谈AVL树,红黑树,B树,B+树原理及应用
背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使 ...
- 树形结构_红黑树:平衡2X 哈夫曼树:最优2X
红黑树:平衡2X 哈夫曼树:最优2X 红黑树 :TreeSet.TreeMap 哈夫曼树 1. 将w1.w2.…,wn看成是有n 棵树的森林(每棵树仅有一个结点): 2. 在森林中选出根结点的权值最小 ...
- 数据结构与算法--从平衡二叉树(AVL)到红黑树
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...
- 数据结构图解(递归,二分,AVL,红黑树,伸展树,哈希表,字典树,B树,B+树)
递归反转 二分查找 AVL树 AVL简单的理解,如图所示,底部节点为1,不断往上到根节点,数字不断累加. 观察每个节点数字,随意选个节点A,会发现A节点的左子树节点或右子树节点末尾,数到A节点距离之差 ...
- 数据结构(一)二叉树 & avl树 & 红黑树 & B-树 & B+树 & B*树 & R树
参考文档: avl树:http://lib.csdn.net/article/datastructure/9204 avl树:http://blog.csdn.net/javazejian/artic ...
- B树 B+树 红黑树
B-Tree(B树) 具体讲解之前,有一点,再次强调下:B-树,即为B树.因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解. ...
- 平衡树B树B+树红黑树
二叉树与二叉查找树的操作是必须要熟练掌握的,接下来说的这些树实现起来很困难,所以我们重点去了解他们的特点. 一.平衡二叉查找树与红黑树 平衡树AVL:追求绝对的高度平衡,它具有稳定的logn的高度,因 ...
随机推荐
- Scikit-Learn机器学习入门
现在最常用的数据分析的编程语言为R和Python.每种语言都有自己的特点,Python因为Scikit-Learn库赢得了优势.Scikit-Learn有完整的文档,并实现很多机器学习算法,而每种算法 ...
- MySQL易忘知识点梳理
一.零碎知识 1.mysql where子句区分大小写:WHERE BINARY 2.判断是否为null,只能用is null,is not null,不能用=null或!=null 3.函数 4.S ...
- mvn本地部署命令行
---创建mvn项目 mvn archetype:generate 运行结果如下: ---调试mvn仓库 mvn archetype:generate –X 运行结果如下: ---创建依赖 mvn a ...
- 深入浅出js中的this
Q:this是什么? A:this是Javascript语言的一个关键字,它代表函数运行时,自动生成的一个内部对象,在每个 function 中自动根据作用域(scope) 确定, 指向的是此次调用者 ...
- 北美KubeCon新风,正把K8S魔力带向边缘计算
作者:DJ 审校:Kevin·Wang 1. 容器生态圈新的创新方向 2018年容器技术圈的年终盛典北美KubeCon终于在西雅图落下了帷幕.这次北美KubeCon总共吸引了8000多观众参会,创下历 ...
- 写个hello world了解Rxjava
目录 什么是Rxjava? 在微服务中的优点 上手使用 引入依赖 浅谈分析Rxjava中的被观察者,观察者 spring boot 项目中使用Rxjava2 什么是Rxjava? 来自百度百科的解释 ...
- Cisco Packet Tracer中通过集线器组网
Cisco Packet Tracer中可以通过集线器将多台电脑完成通信. Cisco Packet Tracer 6.2.0 一.添加三台电脑设备 1.按照下图1.2步骤操作,2步骤执行三次,拖拽P ...
- STM平台增加性能测试/稳定性测试部分【一】
前置 我之前写了一个接口自动化平台的,后期因为一个原因删除了. 现在,在此平台的基础上,我又增加了性能/稳定性的功能 它的前端大概是这样: 数据解析: 图表展示: 我将稳定性及性能归与一套方案去编写, ...
- 解决ScrollViewer嵌套的DataGrid、ListBox等控件的鼠标滚动事件无效
C# 中,两个ScrollViewer嵌套在一起或者ScrollViewer里面嵌套一个DataGrid.ListBox.Listview(控件本身有scrollviewer)的时候,我们本想要的效果 ...
- Netty源码分析第3章(客户端接入流程)---->第1节: 初始化NioSockectChannelConfig
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带 ...