题面

Bzoj

题解

考虑容斥原理,所有人都有特产的方案数等于:

至少零个人没有特产$-$至少一个人没有特产$+$至少两个人有特产$-...$

接着考虑其中一种情况怎么求(假设现在至少有$i$个人没有特产):

对于每种特产,我们分开考虑,假设当前特产有$a[j]$个,则我们可以看作是将$a[j]$个相同的球放入$n-i$个相同的盒子中,允许出现空盒(因为之前说的是至少),利用插板法,方案数为:$C_{n-i+a[j]-1}^{n-i-1}$

最后当前情况的贡献绝对值就是,$C[n][i]$乘上每种特产的贡献之积,$C[n][i]$表示使得$n$个同学中的$i$个没有特产。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 2e3 + 10, P = 1e9 + 7;
int n, m, a[N], c[N][N], ret; int main () {
int lim = N - 10; c[0][0] = 1;
for(int i = 1; i <= lim; ++i) {
c[i][0] = c[i][i] = 1;
for(int j = 1; j < i; ++j)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % P;
}
read(n), read(m);
for(int i = 1; i <= m; ++i) read(a[i]);
for(int i = 0, gx = 1; i <= n; ++i) {
int dq = 1;
for(int j = 1; j <= m; ++j)
dq = 1ll * dq * c[n + a[j] - i - 1][n - i - 1] % P;
if(gx > 0) ret = (ret + 1ll * c[n][i] * dq % P) % P;
else ret = (ret + P - 1ll * c[n][i] * dq % P) % P;
gx = -gx;
} printf("%d\n", ret);
return 0;
}

Bzoj4710 分特产(容斥原理+组合数)的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学

    题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...

  3. BZOJ4710 分特产

    题目链接:戳我 容斥题. 设\(f[i]\)表示至多有i个人能够分到(也就是至少n-i个人分不到)的方案数 \(f[i]=\prod_{j=1}^mC_{a[j]+i-1}^i-1\) a[j]表示的 ...

  4. 题解 [BZOJ4710] 分特产

    题面 解析 step 1 我们先考虑下有人没有的情况吧, 那对于每个特产就是放隔板的情况了, 设\(a[i]\)为第\(i\)个特产的个数, 那么第\(i\)个特产的方案数就是\(C_{a[i]+n- ...

  5. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  6. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  7. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  8. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  9. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

随机推荐

  1. idea 常用快捷使用

    一.智能提示 1.快速移动到错误代码 :Shift+F2 或者 f2/ 2.快速修复:Alt+Enter 3.快速生成括号:Ctrl+Shift+Enter 二.重构 1.重构功能汇总:Ctrl+Sh ...

  2. ASP.NET 数据库缓存依赖

    By Peter A. Bromberg, Ph.D. 在ASP.NET中,Cache类最酷的特点是它能根据各种依赖来良好的控制自己的行为.以文件为基础的依赖是最有用的,文件依赖项是通过使用 Cach ...

  3. 分享自己新做的vim colorscheme

    把下面的内容保存成darkslategrey.vim,放入~/.vim/colors目录即可. " Vim color file " Maintainer: jiqing() &q ...

  4. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛:Frequent Subsets Problem (状态压缩)

    题目链接 题目翻译: 给出一个数n,和一个浮点数a,数n代表全集U = {1,2,...,n},然后给出 M个U的子集,如果一个集合B(是U的子集),M个集合中有至少M*a个集合包含B, 则B这个集合 ...

  5. Python练习-装饰器版-为什么我的用户总被锁定

    参考代码如下: 1.用户登录程序流程控制代码: # 编辑者:闫龙 if __name__ == '__main__': import UserLoginFuncation LoclCount=[]; ...

  6. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer::ComputeF21 (OpenCV 细节)

    ORB_SLAM2 计算 F21 的代码是这样的. cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,c ...

  7. 【多视图几何】TUM 课程 第1章 数学基础:线性代数

    在 YouTube 上找到了慕尼黑工业大学(Technische Universitaet München)计算机视觉组 Daniel Cremers 教授的 Multiple View Geomet ...

  8. 【bzoj题解】1012 最大数

    题目描述 现在请求你维护一个数列,要求提供以下两种操作:1.查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2.插入操作.语法:A ...

  9. Git管理本地代码(一)【转】

    转自:http://blog.csdn.net/weihan1314/article/details/8677800 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   安 ...

  10. python 结构化数据解析

    # -*- coding: utf-8 -*- # @Time : 2018/8/31 14:32 # @Author : cxa # @File : glomtest.py # @Software: ...