Bzoj4710 分特产(容斥原理+组合数)
题面
题解
考虑容斥原理,所有人都有特产的方案数等于:
至少零个人没有特产$-$至少一个人没有特产$+$至少两个人有特产$-...$
接着考虑其中一种情况怎么求(假设现在至少有$i$个人没有特产):
对于每种特产,我们分开考虑,假设当前特产有$a[j]$个,则我们可以看作是将$a[j]$个相同的球放入$n-i$个相同的盒子中,允许出现空盒(因为之前说的是至少),利用插板法,方案数为:$C_{n-i+a[j]-1}^{n-i-1}$
最后当前情况的贡献绝对值就是,$C[n][i]$乘上每种特产的贡献之积,$C[n][i]$表示使得$n$个同学中的$i$个没有特产。
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 2e3 + 10, P = 1e9 + 7;
int n, m, a[N], c[N][N], ret;
int main () {
int lim = N - 10; c[0][0] = 1;
for(int i = 1; i <= lim; ++i) {
c[i][0] = c[i][i] = 1;
for(int j = 1; j < i; ++j)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % P;
}
read(n), read(m);
for(int i = 1; i <= m; ++i) read(a[i]);
for(int i = 0, gx = 1; i <= n; ++i) {
int dq = 1;
for(int j = 1; j <= m; ++j)
dq = 1ll * dq * c[n + a[j] - i - 1][n - i - 1] % P;
if(gx > 0) ret = (ret + 1ll * c[n][i] * dq % P) % P;
else ret = (ret + P - 1ll * c[n][i] * dq % P) % P;
gx = -gx;
} printf("%d\n", ret);
return 0;
}
Bzoj4710 分特产(容斥原理+组合数)的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...
- BZOJ4710 分特产
题目链接:戳我 容斥题. 设\(f[i]\)表示至多有i个人能够分到(也就是至少n-i个人分不到)的方案数 \(f[i]=\prod_{j=1}^mC_{a[j]+i-1}^i-1\) a[j]表示的 ...
- 题解 [BZOJ4710] 分特产
题面 解析 step 1 我们先考虑下有人没有的情况吧, 那对于每个特产就是放隔板的情况了, 设\(a[i]\)为第\(i\)个特产的个数, 那么第\(i\)个特产的方案数就是\(C_{a[i]+n- ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 【BZOJ4710】[JSOI2011]分特产(容斥)
[BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
随机推荐
- IE6下面的css调试工具
在开发过程中,代码部分实现之后,就要着手于前台展示部分的界面,公司的美工又是新手,无奈,只有自己慢慢调了,但IE6之前的版本都没有好的调试工具,后来在网上搜索了一个 IE Developer Tool ...
- 解决IE6中 PNG图片透明的终极方案-八种方案!
“珍惜生命,远离IE6”,IE6中的bug令很多Web前端开发人员实为头疼,因此不知道烧了多少脑细胞,在众多的Bug中最令人抓狂的就是IE对png图片的不支持,导致设计师和重构师放弃了很多很炫的效果, ...
- ES6简单总结
1.变量声明let和const 我们都是知道在ES6以前,var关键字声明变量.无论声明在何处,都会被视为声明在函数的最顶部(不在函数内即在全局作用域的最顶部).这就是函数变量提升例如: functi ...
- linux挂载光盘
1.找到光盘的位置 ls -l /dev |grep cdrom mount /dev/sr0 /mnt [root@node2 /]# ls -l /dev |grep cdrom lrwxrwx ...
- 关于runOnUiThread()与Handler两种更新UI的方法
在Android开发过程中,常需要更新界面的UI.而更新UI是要主线程来更新的,即UI线程更新.如果在主线线程之外的线程中直接更新页面显示常会报错.抛出异常:android.view.ViewRoot ...
- Linux查看用户密码修改时间
在/etc/shadow文件里面,第三个字段标识表示密码修改日期:这个是表明上一次修改密码的日期与1970-1-1相距的天数.如果账户自创建后,没有修改过密码,就可以使用这个字段来查找账号创建日期. ...
- gcc编译选项【转】
转自:https://blog.csdn.net/rheostat/article/details/19811407 常用选项 -E:只进行预处理,不编译-S:只编译,不汇编-c:只编译.汇编,不链接 ...
- shell脚本编程之“最简单的死循环”【转】
转自:http://blog.chinaunix.net/uid-23046336-id-3475462.html 在linux下编程的程序猿都知道shell脚本,就算你不怎么熟悉,也应该听过的吧!那 ...
- 读书笔记 effective c++ Item 19 像设计类型(type)一样设计类
1. 你需要重视类的设计 c++同其他面向对象编程语言一样,定义了一个新的类就相当于定义了一个新的类型(type),因此作为一个c++开发人员,大量时间会被花费在扩张你的类型系统上面.这意味着你不仅仅 ...
- Scrapy官网程序执行示例
Windows 10家庭中文版本,Python 3.6.4,Scrapy 1.5.0, Scrapy已经安装很久了,前面也看了不少Scrapy的资料,自己尝试使其抓取微博的数据时,居然连登录页面(首页 ...