CF833B The Bakery

LG传送门

线段树优化DP。

其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题。

先考虑\(O(n^2k)\)做法:设\(f[i][j]\)表示\(1\)到\(i\)之间分割\(j\)次得到的最大值,\(g[i][j]\)表示\(i\)到\(j\)之间不同的颜色个数。

转移就是:

\[f[i][j]=max \{f[t][j-1]+g[t+1][i] \} \qquad t \in [1,i)
\]

但是时空都无法承受,考虑优化。

考虑使用线段树处理转移,我们不处理\(g\)数组(\(O(n^2)\)的空间开不下),对于每一个点处理它对从前一个同颜色位置到当前位置的贡献,即在线段树上把这些位置的权值\(++\),维护一个区间最大值,转移时直接查询前缀最大值就可以了。事实上,这里的线段树只是把\(f\)和\(g\)拿来一起转移从而优化了时间复杂度,转移的本质是没有变的。

可以滚动数组(不用也没关系),具体看代码。

#include<cstdio>
#include<cctype>
#define B 1000000
#define R register
#define I inline
using namespace std;
const int S=35003,M=140003;
char buf[B],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,B,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=f*10+(c^48),c=gc();
return f;
}
int h[S],p[S],b[M],c[M],f[S],n;
I int max(int x,int y){return x>y?x:y;}
I void upd(int k,int v){c[k]+=v,b[k]+=v;}
I void psu(int k,int p,int q){c[k]=max(c[p],c[q]);}
I void psd(int k,int p,int q){if(b[k]) upd(p,b[k]),upd(q,b[k]),b[k]=0;}
void bld(int k,int l,int r){
b[k]=0;
if(l==r){
c[k]=f[l-1];
return ;
}
R int p=k<<1,q=p|1,m=l+r>>1;
bld(p,l,m),bld(q,m+1,r),psu(k,p,q);
}
void mdf(int k,int l,int r,int x,int y){
if(x<=l&&r<=y){
upd(k,1);
return ;
}
R int p=k<<1,q=p|1,m=l+r>>1;
psd(k,p,q);
if(x<=m)
mdf(p,l,m,x,y);
if(m<y)
mdf(q,m+1,r,x,y);
psu(k,p,q);
}
int qry(int k,int l,int r,int x,int y){
if(x<=l&&r<=y)
return c[k];
R int m=l+r>>1,p=k<<1,q=p|1,o=0;
psd(k,p,q);
if(x<=m)
o=max(o,qry(p,l,m,x,y));
if(m<y)
o=max(o,qry(q,m+1,r,x,y));
return o;
}
int main(){
R int k,i,j,x;
n=rd(),k=rd();
for(i=1;i<=n;++i)
x=rd(),p[i]=h[x]+1,h[x]=i;
for(i=1;i<=k;++i){
bld(1,1,n);
for(j=1;j<=n;++j)
mdf(1,1,n,p[j],j),f[j]=qry(1,1,n,1,j);
}
printf("%d",f[n]);
return 0;
}

CF833B The Bakery 线段树,DP的更多相关文章

  1. CF833B The Bakery (线段树+DP)

    题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值 考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写 ...

  2. codeforces#426(div1) B - The Bakery (线段树 + dp)

    B. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. Codeforces.833B.The Bakery(线段树 DP)

    题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...

  4. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  5. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  7. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  8. Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)

     The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...

  9. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

随机推荐

  1. 使用Instruments中的CoreAnimation分析动画

    使用Instruments中的CoreAnimation分析动画 1. 打开Instruments中的CoreAnimation 2. 运行前的准备工作 要注意勾选以下选项,便于调试 3. 运行与调试 ...

  2. [C++] 用Xcode来写C++程序[4] 函数

    用Xcode来写C++程序[4] 函数 此节包括引用函数,内联函数,防止修改函数入参,函数自身带有默认值. 引用函数:防止复制对象,减少系统开销 内联函数:编译的时候根据具体情形将代码嵌入进去,成不成 ...

  3. Windows下Git使用报错:warning:LF will be replaced by CRLF in ××××.××

    Windows下Git使用报错: warning:LF will be replaced by CRLF in ××××.××(文件名) The file will have its original ...

  4. iptables简单规则记录

    先来一句:好记性不如烂笔头! 1.iptables简介 iptables是基于包过滤的防火墙,它主要工作在osi模型的2,,4层,也可以工作在7层(iptables + squid) 2.原理 防火墙 ...

  5. fun()可拆分赋值 fun()可以拆, 变成 fun 和 括号, fun 可以赋值

    2. 函数名可以赋值给其他变量   --->   就是 func()可以拆 def fun (): print("哈哈") a = fun # 拆分 fun()的    fu ...

  6. 原生JavaScript可以干那些事情

    1.原生JavaScript实现字符串长度截取 function cutstr(str, len) { var temp; var icount = 0; var patrn = /[^\x00-\x ...

  7. java quartz 中的时间格式

    SimpleTrigger 如果需要计划一个任务在指定的时间执行,或者在指定的时间后以指定的间隔连续执行多次,比如希望在2005年1月12号上午11:22:54开始执行一个任务,在这之后每隔20分钟执 ...

  8. SGU---105 水题

    题目链接: https://cn.vjudge.net/problem/SGU-105 题目大意: 定义一个数列 1,12,123,1234,12345......12345678910,123456 ...

  9. iOS 网络缓存总结

    一.缓存策略: 1.缓存策略的配置: 缺省缓存策略的存储策略需要服务器的响应配置: 缺省缓存策略的使用需要请求端的配置: 2.缓存策略的缺陷: 移动端比较通用的缓存策略是先使用缓存同时更新本地数据: ...

  10. Python中的赋值和拷贝

    赋值 在python中,赋值就是建立一个对象的引用,而不是将对象存储为另一个副本.比如: >>> a=[1,2,3] >>> b=a >>> c= ...