escription

老师准备了一堆糖果, 恰好n个小朋友可以分到数目一样多的糖果. 老师要n个小朋友去拿糖果, 然后围着圆桌坐好, 第1个小朋友的左边是第n个小朋友, 其他第i个小朋友左边是第i-1个小朋友. 大家坐好后, 老师发现, 有些小朋友抢了很多的糖果, 有的小朋友只得到了一点点糖果, 甚至一颗也没有 , 设第i个小朋友有ai颗糖果. 小朋友们可以选择将一些糖果给他左边的或者右边的小朋友, 通过”糖果传递”最后使得每个小朋友得到的糖果数是一样多的, 假设一颗糖果从一个小朋友传给另一个小朋友的代价是1, 问怎样传递使得所耗的总代价最小.

Input

第一行一个正整数n,表示小朋友的个数. n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数.

Output

输出只有一个数, 表示最小代价.

Sample Input

4
1
2
5
4

Sample Output

4

HINT

数据范围
30%的测试数据, n<=1000.
100%的测试数据, n<=1000000.
ai>=0, 保证ai在longint/int范围内, ai的总和在int64/long long范围内.

题解

首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。
对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave  ->  X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave  ->  X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave  ->  X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
……
对于第n个小朋友,An-Xn+X1=ave。
  我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。
 
//同白书金币一题

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,a[],c[],ave;ll sum;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
ave=sum/n;
for(int i=;i<=n;i++)
c[i]=c[i-]+a[i]-ave;
sort(c+,c+n+);
ll ans=;
int mid=c[(n>>)+];
for(int i=;i<=n;i++)
ans+=abs(c[i]-mid);
printf("%lld",ans);
return ;
}
 

bzoj1045 糖果传递的更多相关文章

  1. 【数学】【HAOI2008】【BZOJ1045糖果传递】【BZOJ3293分金币】论数学的重要性

    BZOJ1045和BZOJ3293一模一样两道题,在这里我用1045来讲. 1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MB ...

  2. BZOJ-1045 糖果传递 数学+递推

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2975 Solved: 1327 [Submit][Sta ...

  3. 【BZOJ1045】[HAOI2008]糖果传递

    [BZOJ1045][HAOI2008]糖果传递 题面 bzoj 洛谷 题解 根据题意,我们可以很容易地知道最后每个人的糖果数\(ave\) 设第\(i\)个人给第\(i-1\)个人\(X_i\)个糖 ...

  4. 【BZOJ1045】糖果传递(贪心)

    [BZOJ1045]糖果传递(贪心) 题面 BZOJ 洛谷 题解 秉承者娱乐精神,我们必须写一个费用流,并且相信信仰跑不过去. 于是写了一个\(zkw\)费用流如下:(您可以无视此份代码) #incl ...

  5. 【BZOJ1045】[HAOI2008] 糖果传递 贪心

    [BZOJ1045][HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正 ...

  6. bzoj3293 [Cqoi2011]分金币&&bzoj1045 [HAOI2008]糖果传递

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  7. 【bzoj1465/bzoj1045】糖果传递 数论

    题目描述 老师准备了一堆糖果, 恰好n个小朋友可以分到数目一样多的糖果. 老师要n个小朋友去拿糖果, 然后围着圆桌坐好, 第1个小朋友的左边是第n个小朋友, 其他第i个小朋友左边是第i-1个小朋友. ...

  8. bzoj1045: [HAOI2008] 糖果传递(数论)

    1045: [HAOI2008] 糖果传递 题目:传送门(双倍经验3293) 题解: 一开始想着DP贪心一顿乱搞,结果就GG了 十分感谢hzwer大佬写的毒瘤数论题解: 首先,最终每个小朋友的糖果数量 ...

  9. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

随机推荐

  1. LNMP环境magento常见错误

    一.安装报404错误 git clone 下最新代码,跳转到index/install 安装时出现404错误 需要把伪静态规则加到nginx配置文件中: # # The default server ...

  2. 一次ie8模式下click无反应的小事

    想起了小学时候数不尽的一件小事,哎,那夕阳下的奔跑,是我逝去的青春啊. 言归正传,先上图: <select id="cardNoList" size="4" ...

  3. github

    学习github的不错的资源 http://gitref.org/zh/index.html https://wuyuans.com/2012/05/github-simple-tutorial/#t ...

  4. PAT 1034. 有理数四则运算(20)

    本题要求编写程序,计算2个有理数的和.差.积.商. 输入格式: 输入在一行中按照"a1/b1 a2/b2"的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只 ...

  5. SQL Left Join, Right Join, Inner Join, and Natural Join 各种Join小结

    在SQL语言中,存在着各种Join,有Left Join, Right Join, Inner Join, and Natural Join等,对于初学者来说肯定一头雾水,都是神马跟神马啊,它们之间到 ...

  6. Visual Studio 2015 Pre Secondary Installer 在哪里

    安装vs2015 pre后,会自动打开Secondary Installer, 用于Cross Platform的移动开发框架,包括Cordova插件.若安装失败,启动程序位置: "D:\P ...

  7. SharePoint Fundation 2013中SecurityTokenServiceApplication错误

    在Fundation 2013与Office Web Apps Server集成,预览文档时提示错误,存入口检查失败,因为可用内存(47091712 字节)少于总内存的 5%.因此,该服务不可用于传入 ...

  8. SQLite应用之实例代码

    目录 一.获取表的Schema信息 二.常规数据插入 三.高效的批量数据插入 四.数据查询 一.获取表的Schema信息    1). 动态创建表.    2). 根据sqlite3提供的API,获取 ...

  9. 对称矩阵、Hermite矩阵、正交矩阵、酉矩阵、奇异矩阵、正规矩阵、幂等矩阵

    2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵. ...

  10. URLDecoder解析url编码

    try { strJson = URLDecoder.decode(strJson, "utf-8"); } catch (UnsupportedEncodingException ...