P2015 二叉苹果树[树形dp+背包]
题目描述
有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)
这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树
2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。
解析
一道很简单的树形dp,然而我调了半天都没调出来,就是菜。
容易看出状态\(dp[x][i]\)表示以\(x\)为根的子树保留\(i\)条边能留住的最多苹果数。
这题坑点在于,题面其实没讲清楚,实际上我们要找的是剪枝后使得剩下的树枝都能与根节点相连的最优情况。
所以说,我们要在状态转移时体现出这一点。具体来说,就是每次转移我们都要保留至少一条从该根节点到其某个儿子的边。剩下的就是个分组背包,没什么好讲的。
状态转移:
\]
具体解释一下方程含义:首先显然,每个以\(x\)为根的子树能够保留的最多的边数就是其子树大小\(-1\)。\(dp[x][i-j-1]\)是由于我们在\(y\)的子树中取了\(j\)条边,如果再在\(x\)的子树中再取\(i-j\)条边的话,我们不能保证\(x\rightarrow y\)之间有连边,也不能保证\(x\)与另一儿子之间有连边,所以我们给多出来一条边,而这条边显然只能连在\(x\rightarrow y\),保证了可行性。再者,对于上下界如果\(j\)取了\(i\),那么意思就是所有选取的边要不然在\(y\)的子树,要不然在\(x\)的子树,而不会多出哪怕一条边在\(x\rightarrow y\),显然时不可行的。
参考代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 210
#define MOD 2520
#define E 1e-12
using namespace std;
struct node{
int next,ver,edge;
}g[N<<1];
int head[N],tot,n,q,dp[N][N],size[N];
bool v[N];
inline void add(int x,int y,int val)
{
g[++tot].ver=y,g[tot].edge=val;
g[tot].next=head[x],head[x]=tot;
}
inline void dfs(int x)
{
size[x]=1;
for(int i=head[x];i;i=g[i].next){
int y=g[i].ver,z=g[i].edge;
dfs(y);
size[x]+=size[y];
for(int t=min(q,size[x]);t>0;--t)
for(int j=min(t-1,size[y]);j>=0;--j)
dp[x][t]=max(dp[x][t],dp[x][t-j-1]+dp[y][j]+z);
}
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<n;++i){
int u,v,val;
scanf("%d%d%d",&u,&v,&val);
add(u,v,val);
}
dfs(1);
cout<<dp[1][q]<<endl;
return 0;
}
P2015 二叉苹果树[树形dp+背包]的更多相关文章
- 【P2015】二叉苹果树 (树形DP分组背包)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...
- P2015 二叉苹果树 (树形动规)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 二叉苹果树——树形Dp(由根到左右子树的转移)
题意:给出一个二叉树,每条边上有一定的边权,并且剪掉一些树枝,求留下 Q 条树枝的最大边权和. ( 节点数 n ≤100,留下的枝条树 Q ≤ n ,所有边权和 ∑w[i] ≤30000 ) 细节:对 ...
- 【Luogu】P2015二叉苹果树(DP,DFS)
题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...
- P2015 二叉苹果树,树形dp
P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- P2015 二叉苹果树
P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...
- 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解
二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
随机推荐
- Java虚拟机栈(java stack)
虚拟机栈(java stack) 百度图片搜索里的动图搜索功能不错,可以搜索一些动图,展示操作数栈的操作过程,比较形象.这点google差点意思 虚拟机栈(jvm stacks)是线程独占的 里面是多 ...
- docker+nginx部署静态网页(html)
我看了下网上都是部署单个.html页面的实例.所以今天试试多个.html文件的部署. 因为之前docker部署过vue.js打包的项目,所以按上次部署方式部署.结果还真行,只是这次部署的是小滴课堂上的 ...
- java接入微信JS-SDK
在微信公众号开发中不可,jssdk的接入虽然不是必须,但是根据业务需求我们还是可能用到,下面是自己整理的关于java接入的jssdk的方法,这里是记录关于接入微信JS-SDK的准备工作,关于接入JS- ...
- 封装关于金额计算的double工具类
由于直接使用double类型的加减乘除,可能会出现不可预测的问题,精度丢失等等.在业务中,计算金额是一件很重要的事情. 可以直接使用BigDecimal类,进行加减乘除.相关BigDecimal类介绍 ...
- Java开发笔记(一百三十)Swing的选择框
不管是AWT还是Swing,都把选择框分成两类:复选框和单选按钮,这两类控件无论是外观上还是功能上均有显著差异.例如,在外观方面,复选框是在方框内打勾,而单选按钮是在圆圈内画圆点:在功能方面,复选框允 ...
- pychram 中 Terminal 中 git log 中文乱码解决办法
添加环境变量 set LESSCHARSET=utf-8 执行以下命令 git config --global core.quotepath false 不成功执行以下命令 git config -- ...
- TZOJ5255: C++实验:三角形面积
#include<iostream> #include<iomanip> #include<math.h> #include<cmath> using ...
- python基础_mysql建表、编辑、删除、查询、更新
1.建一张学生表 包含(id,name,age,sex)2.增加四条数据3.查询表中sex为男的数据4.删除id =3的数据,5.将sex为女的,修改为男 create: CREATE TABLE d ...
- DevExtreme学习笔记(一) DataGrid中数据筛选
config.filterRow = { visible: true, applyFilter: "auto" }; config.headerFilter = { visible ...
- catch SocketException
https://stackoverflow.com/questions/32810051/cannot-catch-socketexception/32810079#32810079 https:// ...