On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:

  1. cost will have a length in the range [2, 1000].
  2. Every cost[i] will be an integer in the range [0, 999].

这道题应该算是之前那道 Climbing Stairs 的拓展,这里不是求步数,而是每个台阶上都有一个 cost,让我们求爬到顶端的最小 cost 是多少。换汤不换药,还是用动态规划 Dynamic Programming 来做。这里定义一个一维的 dp数组,其中 dp[i] 表示爬到第i层的最小 cost,然后来想 dp[i] 如何推导。来思考一下如何才能到第i层呢?是不是只有两种可能性,一个是从第 i-2 层上直接跳上来,一个是从第 i-1 层上跳上来。不会再有别的方法,所以 dp[i] 只和前两层有关系,可以写做如下:

dp[i] = min(dp[i- 2] + cost[i - 2], dp[i - 1] + cost[i - 1])

最后返回最后一个数字dp[n]即可,参见代码如下:

解法一:

class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n + );
for (int i = ; i < n + ; ++i) {
dp[i] = min(dp[i- ] + cost[i - ], dp[i - ] + cost[i - ]);
}
return dp.back();
}
};

再来看一种 DP 的解法,跟上面的解法很相近,不同在于 dp 数组长度为n,其中 dp[i] 表示到第 i+1 层的最小 cost,分别初始化 dp[0] 和 dp[1] 为 cost[0] 和 cost[1]。然后从 i=2 处开始遍历,此时更新思路是,要爬当前的台阶,肯定需要加上当前的 cost[i],那么还是要从前一层或者前两层的台阶上跳上来,选择 dp 值小的那个,所以递归式如下:

dp[i] = cost[i] + min(dp[i- 1], dp[i - 2])

最后在最后两个dp值中选择一个较小的返回即可,参见代码如下:

解法二:

class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n);
dp[] = cost[]; dp[] = cost[];
for (int i = ; i < n; ++i) {
dp[i] = cost[i] + min(dp[i- ], dp[i - ]);
}
return min(dp[n - ], dp[n - ]);
}
};

我们可以对空间复杂度进行优化,通过前面的分析我们可以发现,当前的 dp 值仅仅依赖前面两个的值,所以不必把整个 dp 数组都记录下来,只需用两个变量a和b来记录前两个值,然后不停的用新得到的值来覆盖它们就好了。初始化a和b均为0,然后遍历 cost 数组,首先将a和b中较小值加上 num 放入临时变量t中,然后把b赋给a,把t赋给b即可,参见代码如下:

解法三:

class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int a = , b = ;
for (int num : cost) {
int t = min(a, b) + num;
a = b;
b = t;
}
return min(a, b);
}
};

我们还可以用递归来写,需要优化计算量,即用 HashMap 来保存已经算过了台阶,用的还是 dp 的思想,参见代码如下:

解法四:

class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
unordered_map<int, int> memo;
return helper(cost, cost.size(), memo);
}
int helper(vector<int>& cost, int i, unordered_map<int, int>& memo) {
if (memo.count(i)) return memo[i];
if (i <= ) return memo[i] = cost[i];
return memo[i] = (i == cost.size() ? : cost[i]) + min(helper(cost, i - , memo), helper(cost, i - , memo));
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/746

类似题目:

Climbing Stairs

参考资料:

https://leetcode.com/problems/min-cost-climbing-stairs/

https://leetcode.com/problems/min-cost-climbing-stairs/discuss/110109/c-o1-space

https://leetcode.com/problems/min-cost-climbing-stairs/discuss/110111/javascript-and-c-solutions

https://leetcode.com/problems/min-cost-climbing-stairs/discuss/144682/3-Lines-Java-Solution-O(1)-space

[LeetCode] 746. Min Cost Climbing Stairs 爬楼梯的最小损失的更多相关文章

  1. [LeetCode] Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  2. leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)

    leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution) On a staircase, the i-th step ...

  3. LN : leetcode 746 Min Cost Climbing Stairs

    lc 746 Min Cost Climbing Stairs 746 Min Cost Climbing Stairs On a staircase, the i-th step has some ...

  4. Leetcode 746. Min Cost Climbing Stairs 最小成本爬楼梯 (动态规划)

    题目翻译 有一个楼梯,第i阶用cost[i](非负)表示成本.现在你需要支付这些成本,可以一次走两阶也可以走一阶. 问从地面或者第一阶出发,怎么走成本最小. 测试样例 Input: cost = [1 ...

  5. LeetCode 746. Min Cost Climbing Stairs (使用最小花费爬楼梯)

    题目标签:Dynamic Programming 题目给了我们一组 cost,让我们用最小的cost 走完楼梯,可以从index 0 或者 index 1 出发. 因为每次可以选择走一步,还是走两步, ...

  6. Leetcode 746. Min Cost Climbing Stairs

    思路:动态规划. class Solution { //不能对cost数组进行写操作,因为JAVA中参数是引用 public int minCostClimbingStairs(int[] cost) ...

  7. 【Leetcode_easy】746. Min Cost Climbing Stairs

    problem 746. Min Cost Climbing Stairs 题意: solution1:动态规划: 定义一个一维的dp数组,其中dp[i]表示爬到第i层的最小cost,然后来想dp[i ...

  8. 746. Min Cost Climbing Stairs@python

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  9. 746. Min Cost Climbing Stairs 最不费力的加权爬楼梯

    [抄题]: On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once yo ...

随机推荐

  1. D3力布图绘制--在曲线路径上添加文本标记

    今天遇到一个在曲线路径上标识文本标记的问题,找到一个比较好的解决思路,在这里分享下: 使用d3建立的Force Layout,加上自定义的箭头形状,将多条连接线线改成弧线(https://www.cn ...

  2. STS 重写父类方法的操作

    本来这种东西真的没什么好写的,但是很多时候真的是要用到的,不知道的话自己手动敲,会累死人的.所以记录在这里,自己的笔记,有需要的赶紧拿去,省的手动录入那么辛苦. 在代码窗口点击右键,依次选择“Sour ...

  3. dubbo入门教程-从零搭建dubbo服务

    [原创 转载请注明出处] 本文是学习了dubbo之后自己手动写的,比较通俗,很多都是自己学习之后的理解,写的过程中没有参考任何文章. 另外dubbo也有官方文档,但是比较官方,也可以多看看dubbo的 ...

  4. Layui新手教程----帮助小白少走弯路

    Layui的学习 Layui官方文档:https://www.layui.com/ 先说说为啥我接触到了layui,因为需要去参与做一个项目,被学长推荐去学习layui,用来处理一些前端的问题. La ...

  5. V2Ray+WebSocket+TLS+Nginx 配置及使用

    v2ray 是一个模块化的代理工具,支持 VMess,Socks,HTTP,Shadowsocks 等等协议,并且附带很多高级功能,HTTP,TLS 等等. 关键词限制,全文 v2ray 中的 y 为 ...

  6. linq 获取不重复数据,重复数据 var unique = arr.GroupBy(o => o).Where(g => g.Count() == 1) .Select(g => g.ElementAt(0));

    static void Main(string[] args) { int[] arr = { 1, 3, 3, 3, 3, 4, 5, 4, 5, 8, 9, 3 }; //不重复 var uniq ...

  7. IIS错误:在唯一密钥属性“fileExtension”设置为“.json”时,无法添加类型为“mimeMap”的重复集合项

    在用visual studio 打开一个asp.net mvc 项目时,ctrl+f5运行,发现页面无法加载图片.js.json文件. 按F12查看错误,发现500错误.打开报错的js文件,提示: I ...

  8. Docker install in Linux

    install command sudo yum install -y yum-utils device-mapper-persistent-data lvm2 sudo yum-config-man ...

  9. React + Ts 实现三子棋小游戏

    在这里阅读效果更佳 还记得当年和同桌在草稿纸上下三子棋的时光吗 今天我们就用代码来重温一下年少(假设你有react基础,没有也行,只要你会三大框架的任意一种,上手react不难) 游戏规则 双方各执一 ...

  10. OC-RunLoop运行循环

    RunLoop--运行循环 作用:死循环,保证程序不退出:监听事件 (所有事件都是有它监听的):等待用户的交互: 特性: ios中所有的事件监听全部由运行循环负责: 主线程的RunLoop在应用启动的 ...