tensorflow学习笔记(二)
tensorflow中自带的mnist手写数字识别,运用最简单的单层神经网络,softmax激活函数,极客学院上说准确率有91%,我今天调整到了92%! import tensorflow as tf
import numpy as np
import math
import tensorflow.examples.tutorials.mnist as mn
class Mnist:
def __init__(self):
sess = tf.InteractiveSession()
self.mnist = mn.input_data.read_data_sets("E:\\Python35\\Lib\\site-packages\\tensorflow\\examples\\tutorials\\mnist\\MNIST_data",one_hot=True)
self.x = tf.placeholder("float", shape=[None, 784])
self.y_ = tf.placeholder("float", shape=[None, 10])
self.W = tf.Variable(tf.zeros([784,10]))
self.b = tf.Variable(tf.zeros([10]))
self.y = tf.nn.softmax(tf.matmul(self.x,self.W) + self.b)
self.cross_entropy = -tf.reduce_sum(self.y_*tf.log(self.y))
sess.run(tf.global_variables_initializer()) self.bestModel = None
self.bestPredict = 0.0
self.bestIter = 0
self.bestRate = 0.0
self.bestSample = 0 self.iters = [1000,1200,1400]
self.rates = [0.01,0.02]
self.samples = [100,150,200] def train(self):
for iter in self.iters:
for rate in self.rates:
train_step = tf.train.GradientDescentOptimizer(rate).minimize(self.cross_entropy)
for sample in self.samples:
self.optimizer(iter, rate, sample, train_step) def optimizer(self,iter,rate,sample,train_step):
for i in range(iter):
batch = self.mnist.train.next_batch(sample)
model = train_step.run(feed_dict={self.x: batch[0], self.y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(self.y, 1), tf.argmax(self.y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
predict = accuracy.eval(feed_dict={self.x: self.mnist.test.images, self.y_: self.mnist.test.labels})
if predict > self.bestPredict:
self.bestPredict = predict
self.bestModel = model
self.bestIter = iter
self.bestRate = rate
self.bestSample = sample def output(self):
print("bestRate:",self.bestRate,"bestIter:",self.bestIter,"bestSample:",self.bestSample,"bestPredict:",self.bestPredict) if __name__ == '__main__':
mnist = Mnist()
mnist.train()
mnist.output() E:\Python35\python.exe E:/PycharmProjects/test/com/python/machinelearning/tensorflowTest.py
Extracting E:\Python35\Lib\site-packages\tensorflow\examples\tutorials\mnist\MNIST_data\train-images-idx3-ubyte.gz
Extracting E:\Python35\Lib\site-packages\tensorflow\examples\tutorials\mnist\MNIST_data\train-labels-idx1-ubyte.gz
Extracting E:\Python35\Lib\site-packages\tensorflow\examples\tutorials\mnist\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting E:\Python35\Lib\site-packages\tensorflow\examples\tutorials\mnist\MNIST_data\t10k-labels-idx1-ubyte.gz bestRate: 0.01 bestIter: 1000 bestSample: 100 bestPredict: 0.9193
tensorflow学习笔记(二)的更多相关文章
- tensorflow学习笔记二:入门基础 好教程 可用
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础 TensorFlow用张量这种数据结构来表示所有的数据.用一 ...
- tensorflow学习笔记二:入门基础
TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], ...
- Tensorflow学习笔记二
现在来开始安装Tensorflow吧 Tensorflow有两种模式, 一种GPU支持, 另外一种仅CPU支持 虚拟机仅有CPU支持, 那就第一种模式吧 有4种途径去安装 virtualenv &qu ...
- tensorflow学习笔记二----------变量
tensorflow里面的变量表示,需要使用特定的语法进行.如果想构造一个行(列)向量,需要调用Variable函数进行.对两个变量进行操作,也要调用相应的函数. import tensorflow ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
- tensorflow学习笔记——VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- TensorFlow学习笔记0-安装TensorFlow环境
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel( ...
随机推荐
- C#explicit和implicit关键字实现类型转换
using System; namespace ConsoleTest { class Program { static void Main(string[] args) { //implicit 隐 ...
- 易百教程人工智能python修正-人工智能NLTK性别发现器
在这个问题陈述中,将通过提供名字来训练分类器以找到性别(男性或女性). 我们需要使用启发式构造特征向量并训练分类器.这里使用scikit-learn软件包中的标签数据. 以下是构建性别查找器的Pyth ...
- 文件包含漏洞File Inclusion
文件包含漏洞 目录遍历漏洞在国内外有许多不同的叫法,也可以叫做信息泄露漏洞.非授权文件包含漏洞等. 文件包含分类 LFI:本地文件包含(Local File Inclusion) RFI:远程文件包含 ...
- Java web服务端参数校验Javax.validation (springboot)
一.基本使用 Javax.validation是spring集成自带的一个参数校验接口.可通过添加注解来设置校验条件. 下面以springboot项目为例进行说明.创建web项目后,不需要再添加其他的 ...
- 【转载】C#中List集合使用IndexOf判断元素第一次出现的索引位置
在C#的List集合操作中,有时候需要判断元素对象在List集合中第一次出现的索引位置信息,此时需要使用到List集合的IndexOf方法来判断,如果元素存在List集合中,则IndexOf方法返回所 ...
- python day 15: IO多路复用,socketserver源码培析,
目录 python day 15 1. IO多路复用 2. socketserver源码分析 python day 15 2019/10/20 学习资料来自老男孩教育 1. IO多路复用 ''' I/ ...
- 已知IP地址算子网掩码
子网掩码计算方法有两种: 方法一:利用子网数来计算: 1.首先,将子网数目从十进制数转化为二进制数: 2.接着,统计得到的二进制数的位数,设为N: 3.最后,先求出此IP地址对应的地址类别的子网掩码. ...
- linux上安装redis-单机版
1. Redis的安装 1.1. Redis的安装 Redis是c语言开发的. 安装redis需要c语言的编译环境.如果没有gcc需要在线安装.yum install gcc-c++ 安装步骤: 第一 ...
- Linux 里的 2>&1 究竟是什么
原文 我们在Linux下经常会碰到nohup command>/dev/null 2>&1 &这样形式的命令.首先我们把这条命令大概分解下: 首先就是一个nohup:表示当 ...
- idea生成类中序列化id
RPC接口中要传输的对象需要序列化,需要生成序列id,idea中生成序列id的方式如下 在需要添加序列id的类中,选中类名,alt+enter就可以实现了