【题解】物流运输 [ZJ2006] [P1772] [BZOJ1003]

传送门:物流运输 \([ZJ2006]\) \([P1772]\) \([BZOJ1003]\)

【题目描述】

给定一个含 \(e\) 条带权边的无向图,每天都需要从结点 \(1\) 走到结点 \(m\),一共要走 \(n\) 天,每天的花费为所经过路径的权值和。一般来说会选择一条路线每天都这样走下去,但某些结点会在连续的几天内都无法经过,这时候就需要改变路线。每次改变路线都有 \(K\) 的额外花费。求最小总花费。

(即:总花费 \(=\) \(n\) 天经过路径花费和 \(+\) \(K*\) 改变路径次数)

【输入】

第一行四个整数 \(n,m,K,e\),后面 \(e\) 行表示每条边所连接的结点编号和边权。接下来一个整数 \(T\) 表示有 \(T\) 个结点会在某一时段无法通过,后面每行三个整数分别表示节点编号,无法通过的天数起点和终点。

【输出】

一个整数表示最小花费。

【样例】

样例输入:
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5 样例输出:
32

【数据范围】

\(100\%\) \(1 \leqslant N \leqslant 100,\) \(1 \leqslant m \leqslant 20\)


【分析】

暂时先不考虑如何计算路径花费的问题,就先视作 \(w\) 好了。

很明显,状态转移的切入点在于路径的改变。用 \(dp[i]\) 表示走完前 \(i\) 天所需最小花费,设最后一次改变路径后使用的天数为 \([j+1,i]\),那么 \(dp[i]=min\{dp[j]+K+w*(i-j)\}\) 。

一开始看到这个式子还以为是斜率优化,但实际上并不需要,这么良心的数据直接暴力就能过。

求 \(w\) 可以使用 \(dijkstra\) 或者 \(SPFA\),不能走的结点就提前记录一下。可以用 \(no[i][j]\) 表示 \(i\) 在 \(j\) 这天不可走,转移状态时倒序枚举 \(j\)。由于 \(j+1\) 这天不可经过的点在 \(j\) 这天还是不可经过,这样做就可以省掉一些麻烦。

另外,如果 \(inf\) 设太大的话,两个 \(inf\) 相乘会爆 \(long\) \(long\),要特判一下。

初始化有两种方法:\(dp[i]=w*i(i \in [1,n])\) 或者 \(dp[0]=-K\),如果是后者,在第 \(0\) 天后改变路径并加上 \(K\) 的花费,实际上就是 \(0\) 花费选出了第一条路径。

时间复杂度为:\(O(n^2mlogm)\) 。


【Code】

#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register LL
using namespace std;
const LL N=103,M=403,inf=1e18;
LL n,m,e,o,x,y,z,K,to,dp[N],dis[N],pan[N],can[N],head[N],no[N][N];
struct QAQ{LL w,to,next;}a[M<<1];
struct QWQ{LL x,d;inline bool operator<(QWQ o)const{return d>o.d;}};
priority_queue<QWQ>Q;
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline void add(Re x,Re y,Re z){a[++o].to=y,a[o].w=z,a[o].next=head[x],head[x]=o;}
inline LL dijkstra(){
for(Re i=0;i<=m;++i)pan[i]=0;
for(Re i=0;i<=m;++i)dis[i]=inf;
pan[1]=0,Q.push((QWQ){1,dis[1]=0});
while(!Q.empty()){
x=Q.top().x,Q.pop();
if(pan[x]||can[x])continue;
pan[x]=1;
for(Re i=head[x];i;i=a[i].next)
if(dis[to=a[i].to]>dis[x]+a[i].w){
dis[to]=dis[x]+a[i].w;
Q.push((QWQ){to,dis[to]});
}
}
return dis[m];
}
int main(){
in(n),in(m),in(K),in(e);
while(e--)in(x),in(y),in(z),add(x,y,z),add(y,x,z);
in(e);
while(e--){
in(x),in(y),in(z);
for(Re i=y;i<=z;++i)no[x][i]=1;
}
for(Re i=0;i<=n;++i)dp[i]=inf;dp[0]=-K;
for(Re i=1;i<=n;++i){
for(Re k=1;k<=m;++k)can[k]=0;
for(Re j=i-1;j>=0;--j){
for(Re k=1;k<=m;++k)can[k]|=no[k][j+1];
Re tmp=dijkstra();
if(tmp!=inf)dp[i]=min(dp[i],dp[j]+K+(i-j)*tmp);
}
}
printf("%lld",dp[n]);
}

【题解】物流运输 [ZJ2006] [P1772] [BZOJ1003]的更多相关文章

  1. 【BZOJ1003】物流运输(动态规划,最短路)

    [BZOJ1003]物流运输(动态规划,最短路) 题面 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司 ...

  2. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  3. [luogu] P1772 [ZJOI2006]物流运输(动态规划,最短路)

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  4. bzoj1003物流运输 最短路+DP

    bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...

  5. BZOJ 1003 物流运输 题解 【SPFA+DP】

    BZOJ 1003 物流运输 题解 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的 ...

  6. BZOJ1003: [ZJOI2006] 物流运输 trans

    物流运输--看了神犇的题解,就是dp+最短路,设f[i]为1~i天的最少花费,那么 dp[i]=min(cost[1,i],min{dp[j]+cost[j+1,i]+K,1≤j<i}) 就是从 ...

  7. 洛谷P1772 [ZJOI2006]物流运输

    P1772 [ZJOI2006]物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线 ...

  8. bzoj1003: [ZJOI2006]物流运输(DP+spfa)

    1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...

  9. 【BZOJ1003】【ZJOI2006】物流运输

    1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2556  Solved: 1008[Submit] ...

随机推荐

  1. python列表推导式及其简单应用

    列表推导式(又称列表解析式)提供了一种简明扼要的方法来创建列表 一个简单平方 普通for循环 for i in range(1,5): print(i*i,end='') 列表推导式 res = [x ...

  2. ASP.NET Core MVC 502 bad gateway 超时如何处理

    在网页程序运行需要较长时间运行的时候,ASP.NET Core MVC会出现502 bad gateway请求超时情况.一般默认的超时时间都比较短,我们需要在 web.config 中配置一下.其中  ...

  3. mybatis中的高级查询

    Mybatis作为一个ORM框架,肯定是支持sql高级查询的. 下面的一个案例来为大家详细讲解mybatis中的高级查询. 案例说明: 此案例的业务关系是用户,订单,订单详情与商品之间的关系. 以订单 ...

  4. XGBoost使用教程(进阶篇)三

    一.Importing all the libraries import pandas as pdimport numpy as npfrom matplotlib import pyplot as ...

  5. Open Physics

    1.开放物理计划. 开放物理计划,英文Open Physics.是AMD公司为自己的3A平台打造的物理模拟计算平台,以OpenCL为基础,由CPU+GPU联合计算完成.所谓“开放”,是指参与这个计划的 ...

  6. maven 配置文件

    <properties> <project.builder.sourcesEncoding>UTF-8</project.builder.sourcesEncoding& ...

  7. java任务调度之Timer定时器

    定时器相信大家都不陌生,平时使用定时器就像使用闹钟一样,我们可以在固定的时间做某件事,也可以在固定的时间段重复做某件事,今天就来分析一下java中自带的定时任务器Timer. 一.Timer基本使用 ...

  8. JPA 基础

    JPA 基础 数据库驱动 ==> JDBC 规范 ==> ORM 框架 ==> JPA 规范 ==> spring-data-jpa ORM 思想 JPA 的使用步骤 jpa ...

  9. springCloud学习1

    传统项目架构 传统项目分为三层架构,将业务逻辑层.数据库访问层.控制层放入在一个项目中. 优点:适合于个人或者小团队开发,不适合大团队开发. 分布式项目架构 根据业务需求进行拆分成N个子系统,多个子系 ...

  10. Utterance-level Aggregation for Speaker Recognition in The Wild

    文章[1]主要针对的是语句长度不定,含有不相关信号的说话人识别. 深度网络设计的关键在于主干(帧级)网络的类型[the type of trunk (frame level) network]和有时间 ...