将数据保存到MySQL中
import java.sql.DriverManager import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext} /**
* WordCount程序,Spark Streaming消费TCP Server发过来的实时数据的例子:
*
* 1、在master服务器上启动一个Netcat server
* `$ nc -lk 9998` (如果nc命令无效的话,我们可以用yum install -y nc来安装nc)
*
*
* create table wordcount(ts bigint, word varchar(50), count int);
*
* spark-shell --total-executor-cores 4 --executor-cores 2 --master spark://master:7077 --jars mysql-connector-java-5.1.44-bin.jar,
* c3p0-0.9.1.2.jar,spark-streaming-basic-1.0-SNAPSHOT.jar
*
*
*/
object NetworkWordCountForeachRDD {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("NetworkWordCountForeachRDD")
val sc = new SparkContext(sparkConf) // Create the context with a 1 second batch size
val ssc = new StreamingContext(sc, Seconds(5)) //创建一个接收器(ReceiverInputDStream),这个接收器接收一台机器上的某个端口通过socket发送过来的数据并处理
val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER) //处理的逻辑,就是简单的进行word count
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) //将结果保存到Mysql(错误代码:Connection不能序列化 Driver端执行的代码不能在execute上 )
wordCounts.foreachRDD { (rdd, time) =>
Class.forName("com.mysql.jdbc.Driver")
val conn = DriverManager.getConnection("jdbc:mysql://master:3306/test", "root", "root")
val statement = conn.prepareStatement(s"insert into wordcount(ts, word, count) values (?, ?, ?)")
rdd.foreach { record =>
statement.setLong(1, time.milliseconds)
statement.setString(2, record._1)
statement.setInt(3, record._2)
statement.execute()
}
statement.close()
conn.close()
}
//启动Streaming处理流
ssc.start() ssc.stop(false) //将结果保存到Mysql(优化代码)
wordCounts.foreachRDD { (rdd, time) =>
rdd.foreachPartition { partitionRecords =>
val conn = ConnectionPool.getConnection
conn.setAutoCommit(false)
val statement = conn.prepareStatement(s"insert into wordcount(ts, word, count) values (?, ?, ?)")
partitionRecords.zipWithIndex.foreach { case ((word, count), index) =>
statement.setLong(1, time.milliseconds)
statement.setString(2, word)
statement.setInt(3, count)
statement.addBatch()
if (index != 0 && index % 500 == 0) {
statement.executeBatch()
conn.commit()
}
}
statement.executeBatch()
statement.close()
conn.commit()
conn.setAutoCommit(true)
ConnectionPool.returnConnection(conn)
}
} //等待Streaming程序终止
ssc.awaitTermination()
}
}

  

性能:Output层面的更多相关文章

  1. PHP 性能分析与实验——性能的宏观分析

    [编者按]此前,阅读过了很多关于 PHP 性能分析的文章,不过写的都是一条一条的规则,而且,这些规则并没有上下文,也没有明确的实验来体现出这些规则的优势,同时讨论的也侧重于一些语法要点.本文就改变 P ...

  2. QQ会员AMS平台PHP7升级实践

    作者:徐汉彬链接:https://zhuanlan.zhihu.com/p/21493018来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. QQ会员活动运营平台(AMS ...

  3. 日请求亿级的 QQ 会员 AMS 平台 PHP7 升级实践

    QQ会员活动运营平台(AMS),是QQ会员增值运营业务的重要载体之一,承担海量活动运营的Web系统.AMS是一个主要采用PHP语言实现的活动运营平台, CGI日请求3亿左右,高峰期达到8亿.然而,在之 ...

  4. 日请求亿级的QQ会员AMS平台PHP7升级实践

    版权声明:本文由PHP7升级项目组原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/74 来源:腾云阁 https://www ...

  5. 缓存中间件-Redis(二)

    在上一篇中我们简单总结和介绍了Redis的几个方面 1.使用Redis背景 2.Redis通信多路复用的基本原理 3.Redis基本数据结构 4.Redis持久化方式 这一篇我们使用简单的业务场景来介 ...

  6. 如何从软硬件层面提升 Android 动画性能?

    若是有人问如何解决动画性能不佳的问题,Dan Lew Codes 总会反问:你是否使用了硬件层? 动画放映过程中每帧画面可能都要重绘.如果使用视图层,,渲染过的视图可以存入离屏缓存以待将来重用,而无需 ...

  7. 有效提升Python代码性能的三个层面

    使用python进入一个熟练的状态之后就会思考提升代码的性能,尤其是python的执行效率还有很大提升空间(委婉的说法).面对提升效率这个话题,python自身提供了很多高性能模块,很多大牛开发出了高 ...

  8. 性能:Receiver层面

    创建多个接收器 多个端口启动多个receiver在其他Executor,接收多个端口数据,在吞吐量上提高其性能.代码上: import org.apache.spark.storage.Storage ...

  9. 性能:Transform层面

    数据处理的并行度 1.BlockRDD的分区数 (1)通过Receiver接受数据的特点决定 (2)也可以自己通过repartition设置 2.ShuffleRDD的分区数 (1)默认的分区数为sp ...

随机推荐

  1. SQLite数据库简介和使用

    一.Sqlite简介: SQLite (http://www.sqlite.org/),是一款轻型的数据库,是遵守ACID的关联式数据库管理系统,它的设计目标是嵌入式的,而且目前已经在很多嵌入式产品中 ...

  2. C语言指针的一些用法

    指针是C语言的灵魂,精华之所在.指针强大而危险,用得好是一大利器,用得不好是一大潜在危害.正是指针具有强大而又危险的特性,加上指针比较难,很多人用的不好,所以越是封装程度高的语言,越是没有指针的&qu ...

  3. golang微服务框架go-micro 入门笔记2.1 micro工具之micro api

    micro api micro 功能非常强大,本文将详细阐述micro api 命令行的功能 重要的事情说3次 本文全部代码https://idea.techidea8.com/open/idea.s ...

  4. KEPServerEX 6 配置连接 Allen-Bradley MicroLogix 1400

    =============================================== 2019/7/28_第1次修改                       ccb_warlock == ...

  5. 论文笔记 : NCF( Neural Collaborative Filtering)

    ABSTRACT 主要点为用MLP来替换传统CF算法中的内积操作来表示用户和物品之间的交互关系. INTRODUCTION NeuCF设计了一个基于神经网络结构的CF模型.文章使用的数据为隐式数据,想 ...

  6. c# 拼接字符串根据逗号切割 后转换成集合或数组

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_27559331/article/d ...

  7. 常用正则表达式和一些demo

    一.校验数字的表达式 数字:^[0-9]*$ n位的数字:^\d{n}$ 至少n位的数字:^\d{n,}$ m-n位的数字:^\d{m,n}$ 零和非零开头的数字:^(0|[1-9][0-9]*)$ ...

  8. MongoDB和Java(2):普通用户启动mongod进程

    最近花了一些时间学习了下MongoDB数据库,感觉还是比较全面系统的,涉及了软件安装.客户端操作.安全认证.副本集和分布式集群搭建,以及使用Spring Data连接MongoDB进行数据操作,收获很 ...

  9. 2019 房多多java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.房多多等公司offer,岗位是Java后端开发,因为发展原因最终选择去了房多多,入职一年时间了,也成为了面试官 ...

  10. django.db.utils.InternalError: (1060, "Duplicate column name 'user_id'")迁移报错解决方法

    django.db.utils.InternalError: (1060, "Duplicate column name 'user_id'")迁移报错解决方法 django.db ...