[洛谷P5323][BJOI2019]光线
题目大意:有$n$层玻璃,每层玻璃会让$a\%$的光通过,并把$b\%$的光反射。有一束光从左向右射过,问多少的光可以透过这$n$层玻璃
题解:事实上会发现,可以把连续的几层玻璃合成一层玻璃,但是要注意玻璃两侧的反射率可能是不一样的。
令$A$为前$i$层玻璃的透过率,$B$为前$i$层玻璃从右向左的反射率。$a$为第$i+1$层玻璃的透过率,$b$为第$i$层玻璃的反射率。那么前$i+1$层玻璃的透过率为$A'$,前$i+1$层玻璃从右向左的反射率为$B'$
$$
A'=Aa\sum_{i=0}^{\infty}(Bb)^i\\
\because Bb<1\\
\therefore A'=\dfrac{Aa}{1-Bb}\\
\begin{align*}
B'&=b+a^2B\sum_{i=0}^{\infty}(Bb)^2\\
&=b+\dfrac{a^2B}{1-Bb}
\end{align*}
$$
卡点:无
C++ Code:
#include <iostream>
#include <algorithm>
#define mul(a, b) (static_cast<long long> (a) * (b) % mod) const int mod = 1e9 + 7; namespace Math {
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = mul(base, base)) if (p & 1) res = mul(res, base);
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
} int n, A, B, inv_100;
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> A >> B;
inv_100 = Math::inv(100);
A = mul(A, inv_100), B = mul(B, inv_100);
while (--n) {
static int a, b, t;
std::cin >> a >> b;
a = mul(a, inv_100), b = mul(b, inv_100);
t = Math::inv(mod + 1 - mul(B, b));
A = mul(A, a) * t % mod;
B = b + mul(a, a) * B % mod * t % mod;
}
std::cout << A << '\n';
return 0;
}
[洛谷P5323][BJOI2019]光线的更多相关文章
- LOJ 3093: 洛谷 P5323: 「BJOI2019」光线
题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...
- luogu P5323 [BJOI2019]光线
传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...
- [BJOI2019]光线(递推)
[BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
随机推荐
- Linux上使用Windows软件
小书匠 安装完成后,甚至可以在linux上进行视频会议,整个过程分两个步骤: 1.安装deepin-wine 这个步骤看github,Jactor Sue这位老哥弄好了,在这: Deepin-Apps ...
- Cocos Creator开发hello World
若本号内容有做得不到位的地方(比如:涉及版权或其他问题),请及时联系我们进行整改即可,会在第一时间进行处理. 请点赞!因为你们的赞同/鼓励是我写作的最大动力! 欢迎关注达叔小生的简书! 这是一个有质量 ...
- Comparison of SIFT Encoded and Deep Learning Features for the Classification and Detection of Esca Disease in Bordeaux Vineyards(分类MobileNet,目标检测 RetinaNet)
识别葡萄的一种虫害,比较了传统SIFT和深度学习分类,最后还做了目标检测 分类用的 MobileNet,目标检测 RetinaNet MobileNet 是将传统深度可分离卷积分成了两步,深度卷积和逐 ...
- 无人机一体化3DGIS服务平台
随着无人机技术的发展,无人机携带多种设备为GIS应用提供多元化海量基础数据.无人机航测更是以快速.灵活.高效的数据获取方式,迅速扩大了现有的GIS市场,同时GIS行业的广泛应用也推动了无人机技术的发展 ...
- 帝国cms万能标签实现标题截取后自动加入省略号的方法
很多采用帝国CMS建站的站长都会遇到标题过长导致页面排版错乱的情况,这时候往往需要用标题截取并追加上省略号的方法予以解决.对此,帝国CMS万能标签标题截取后自动加入省略号,没有达到字数的则不加省略号可 ...
- NIO Channel 管道
Java NIO的通道类似流,但又有些不同: 既可以从通道中读取数据,又可以写数据到通道.但流的读写通常是单向的. 通道可以异步地读写. 通道中的数据总是要先读到一个Buffer,或者总是要从一个Bu ...
- 【软工实践】Alpha冲刺(6/6)
链接部分 队名:女生都队 组长博客: 博客链接 作业博客:博客链接 小组内容 恩泽(组长) 过去两天完成了哪些任务 描述 tomcat的学习与实现 服务器后端部署,API接口的beta版实现 后端代码 ...
- Spark安装(standalone)
文档:http://spark.apache.org/docs/latest/spark-standalone.html 安装scalahttps://www.scala-lang.org/downl ...
- ArrayList: java之ArrayList详细介绍(转)
1 ArrayList介绍 ArrayList简介 ArrayList 是一个数组队列,相当于 动态数组.与Java中的数组相比,它的容量能动态增长.它继承于AbstractList,实现了List ...
- web服务器请求代理方式
1 通信数据转发程序:代理.网关.隧道 代理:是一种有转发功能的应用程序,他扮演了位于服务器和客户端“中间人”的角色,接收客户端发送的请求并转发给服务器:同时也接收服务器返回的响应并转发给客户端. 使 ...