二次剩余定义:

在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余。例如:x2≡n(mod p)。否则,则q为模n意义下的二次非剩余。

Cipolla算法:一个解决二次剩余强有力的工具,用来求得上式的x的一个算法。

需要学习的数论及数学基础:勒让德符号欧拉判别准则复数运算

勒让德符号:判断n是否为p的二次剩余,p为奇质数。

欧拉定理为xφ(p)≡1(mod p)

当p为素数时,可知φ(p)=p-1,转化为xp-1≡1(mod p)

开根号后为 x(p1)/2≡±1(mod p),如果等于1就肯定开的了方,为-1一定开不了。所以x是否为n的二次剩余就用这个欧拉判别准则。

qpow(n,(mod-)>>)==mod-

随机找数a,使得a2−n为复数的虚数单位的平方,即

随机一个数a,然后对a2−n进行开方操作(就是计算他勒让德符号的值),直到他们的勒让德符号为-1为止(就是开不了方为止)。 就是找到一个a满足(a2−n)(p1)/2=−1。

    LL a=;
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-) a=rand()%mod;

建立复数乘法运算((a+bi)(c+di)=(ac+bd*(-1))+(bc+ad)i)

建立一个类似的域,前面寻找了一个a使(a2−n)(p1)/2=−1,所以我们定义ω=√(a2−n)。那么现在的ω也像i一样,满足ω2=a2−n=-1

node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}

答案=(a+ω)(p+1)/2

根据拉格朗日定理,可以得出虚数处的系数一定为0。

 node q_pow(node a,LL b){
node res;
res.x=,res.y=;
while(b){
if(b&)res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
     node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);
return ans.x;

2019牛客多校训练营第九场B题为Cipolla算法模板题

 #include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=1e9+;
struct node
{
LL x,y;
};
LL w;
node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}
node q_pow(node a,LL b)
{
node res;
res.x=,res.y=;
while(b)
{
if(b&)
res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
LL qpow(LL a,LL b)
{
LL ans=;
a%=mod;
while(b)
{
if(b&)
ans=ans*a%mod;
a=a*a%mod,b>>=;
}
return ans;
}
LL solve(LL n)
{
if(qpow(n,(mod-)>>)==mod-)//勒让德符号
return -;
else if(n==)
return ;
LL a=;//找随机a
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-)//勒让德符号
a=rand()%mod;
node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);//求出答案
return ans.x;
}
int main()
{
int T;
scanf("%d",&T);
LL q,b,n,x,y,c,t=qpow(,mod-);
while(T--)
{
scanf("%lld%lld",&b,&c);
q=(b*b-*c+mod)%mod;
n=solve(q);
if(n==-)
{
printf("-1 -1\n");
continue;
}
x=((b+n)%mod)*t%mod,y=(b-x+mod)%mod;
if(x>y)
swap(x,y);
printf("%lld %lld\n",x,y);
}
return ;
}

二次剩余定理及Cipolla算法入门到自闭的更多相关文章

  1. 二次剩余Cipolla算法学习笔记

    对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...

  2. Cipolla算法学习小记

    转自:http://blog.csdn.net/doyouseeman/article/details/52033204 简介 Cipolla算法是解决二次剩余强有力的工具,一个脑洞大开的算法. 认真 ...

  3. 贝叶斯公式由浅入深大讲解—AI基础算法入门

    1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定 ...

  4. 贝叶斯公式由浅入深大讲解—AI基础算法入门【转】

    本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生, ...

  5. Cipolla算法学习笔记

    学习了一下1个$\log$的二次剩余.然后来水一篇博客. 当$p$为奇素数的时候,并且$(n, p) \equiv 1 \pmod{p}$,用Cipolla算法求出$x^2 \equiv n \pmo ...

  6. URAL 1132 Square Root(二次剩余定理)题解

    题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...

  7. 【转】 SVM算法入门

    课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...

  8. 三角函数计算,Cordic 算法入门

    [-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...

  9. 循环冗余校验(CRC)算法入门引导

    目录 写给嵌入式程序员的循环冗余校验CRC算法入门引导 前言 从奇偶校验说起 累加和校验 初识 CRC 算法 CRC算法的编程实现 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌 ...

随机推荐

  1. Java web开发——文件的上传和下载

    一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...

  2. redis windows版本的使用

    ServiceStack的redis-windows下载 下载新的版本解压到硬盘,使用黑窗口切换到路径后执行 redis-server redis.windows.conf 即可看到redis启动到6 ...

  3. 移动端tap事件(轻击、轻触)

    一.问题 ①移动端也有click点击事件,click点击会延迟200~300ms ②因为点击的响应过慢,影响了用户体验,所以需要解决响应慢的问题 二.解决方案 ①使用tap事件:即轻击,轻敲,响应速度 ...

  4. Noip 2017 题目整理

    目录 2017Noip: 小凯的疑惑 时间复杂度 逛公园 奶酪 宝藏(50fen) 列队(QAQ不会,以后再研究吧) 2017Noip: 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正 ...

  5. gulp+apache代理请求处理javascript跨域请求

    apache设置(参考) 用 apache 的 mod_proxy 模块开启反向代理功能来实现: 1 修改 apache 配置文件 httpd.conf ,去掉以下两行前面 # 号 LoadModul ...

  6. (7)Go切片

    切片 切片(Slice)是一个拥有相同类型元素的可变长度的序列.它是基于数组类型做的一层封装.它非常灵活,支持自动扩容. 切片是一个引用类型,它的内部结构包含地址.长度和容量.切片一般用于快速地操作一 ...

  7. 【大数据应用技术】作业十二|Hadoop综合大作业

    本次作业的要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3339 前言 本次作业是在<爬虫大作业>的基础上进行的 ...

  8. pdfBox 解析 pdf文件

    Spting boot 项目 1.添加依赖 <dependency> <groupId>org.apache.pdfbox</groupId> <artifa ...

  9. InvalidSelectorError: Compound class names not permitted报错处理

    InvalidSelectorError: Compound class names not permitted报错处理 环境:python3.6 + selenium 3.11 +  chromed ...

  10. JVM探究之 —— HotSpot虚拟机对象探秘

    本节以常用的虚拟机HotSpot和常用的内存区域Java堆为例,深入探讨HotSpot虚拟机在Java堆中对象分配.布局和访问的全过程. 1. 对象的创建 Java是一门面向对象的编程语言.在语言层面 ...