二次剩余定理及Cipolla算法入门到自闭
二次剩余定义:
在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余。例如:x2≡n(mod p)。否则,则q为模n意义下的二次非剩余。
Cipolla算法:一个解决二次剩余强有力的工具,用来求得上式的x的一个算法。
需要学习的数论及数学基础:勒让德符号、欧拉判别准则和复数运算。
勒让德符号:判断n是否为p的二次剩余,p为奇质数。
欧拉定理为xφ(p)≡1(mod p)
当p为素数时,可知φ(p)=p-1,转化为xp-1≡1(mod p)
开根号后为 x(p−1)/2≡±1(mod p),如果等于1就肯定开的了方,为-1一定开不了。所以x是否为n的二次剩余就用这个欧拉判别准则。
qpow(n,(mod-)>>)==mod-
随机找数a,使得a2−n为复数的虚数单位的平方,即
随机一个数a,然后对a2−n进行开方操作(就是计算他勒让德符号的值),直到他们的勒让德符号为-1为止(就是开不了方为止)。 就是找到一个a满足(a2−n)(p−1)/2=−1。
LL a=;
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-) a=rand()%mod;
建立复数乘法运算((a+bi)(c+di)=(ac+bd*(-1))+(bc+ad)i)
建立一个类似的域,前面寻找了一个a使(a2−n)(p−1)/2=−1,所以我们定义ω=√(a2−n)。那么现在的ω也像i一样,满足ω2=a2−n=-1
node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}
答案=(a+ω)(p+1)/2
根据拉格朗日定理,可以得出虚数处的系数一定为0。
node q_pow(node a,LL b){
node res;
res.x=,res.y=;
while(b){
if(b&)res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);
return ans.x;
2019牛客多校训练营第九场B题为Cipolla算法模板题
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=1e9+;
struct node
{
LL x,y;
};
LL w;
node two(node a,node b)//复数相乘
{
node ans;
ans.x=(a.x*b.x%mod+a.y*b.y%mod*w%mod)%mod;
ans.y=(a.x*b.y%mod+a.y*b.x%mod)%mod;
return ans;
}
node q_pow(node a,LL b)
{
node res;
res.x=,res.y=;
while(b)
{
if(b&)
res=two(res,a);
a=two(a,a);
b>>=;
}
return res;
}
LL qpow(LL a,LL b)
{
LL ans=;
a%=mod;
while(b)
{
if(b&)
ans=ans*a%mod;
a=a*a%mod,b>>=;
}
return ans;
}
LL solve(LL n)
{
if(qpow(n,(mod-)>>)==mod-)//勒让德符号
return -;
else if(n==)
return ;
LL a=;//找随机a
while(qpow((a*a-n+mod)%mod,(mod-)>>)!=mod-)//勒让德符号
a=rand()%mod;
node p;
p.x=a,p.y=,w=(a*a-n+mod)%mod;
node ans=q_pow(p,(mod+)>>);//求出答案
return ans.x;
}
int main()
{
int T;
scanf("%d",&T);
LL q,b,n,x,y,c,t=qpow(,mod-);
while(T--)
{
scanf("%lld%lld",&b,&c);
q=(b*b-*c+mod)%mod;
n=solve(q);
if(n==-)
{
printf("-1 -1\n");
continue;
}
x=((b+n)%mod)*t%mod,y=(b-x+mod)%mod;
if(x>y)
swap(x,y);
printf("%lld %lld\n",x,y);
}
return ;
}
二次剩余定理及Cipolla算法入门到自闭的更多相关文章
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- Cipolla算法学习小记
转自:http://blog.csdn.net/doyouseeman/article/details/52033204 简介 Cipolla算法是解决二次剩余强有力的工具,一个脑洞大开的算法. 认真 ...
- 贝叶斯公式由浅入深大讲解—AI基础算法入门
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定 ...
- 贝叶斯公式由浅入深大讲解—AI基础算法入门【转】
本文转载自:https://www.cnblogs.com/zhoulujun/p/8893393.html 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生, ...
- Cipolla算法学习笔记
学习了一下1个$\log$的二次剩余.然后来水一篇博客. 当$p$为奇素数的时候,并且$(n, p) \equiv 1 \pmod{p}$,用Cipolla算法求出$x^2 \equiv n \pmo ...
- URAL 1132 Square Root(二次剩余定理)题解
题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...
- 【转】 SVM算法入门
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...
- 三角函数计算,Cordic 算法入门
[-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...
- 循环冗余校验(CRC)算法入门引导
目录 写给嵌入式程序员的循环冗余校验CRC算法入门引导 前言 从奇偶校验说起 累加和校验 初识 CRC 算法 CRC算法的编程实现 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌 ...
随机推荐
- 图书检索系统C版本
原创,转载请注明出处! 程序具有一下功能窗口界面1,Input输入(读入文件,所有的文件都读入)2,Output输出(检验是否读取正确,从结构体数组读入)3,Length统计(此文件里有110本图书) ...
- 持续集成学习10 Pipline初探
一.流水线概述 1.案例 2.流水线语法(input 处会阻塞住让你选择) 3.执行脚本 4.查看语法
- c++中 string类型 转为 char []类型
将string类型转换为字符数组char [] char arr[50]; //数组大小根据s的大小确定 string s= "12slfjksldkfjlsfk"; int le ...
- Min25筛
Min25筛 我是沙雕... 从yyb博客蒯的 要求:\(\sum_{i=1}^nF(x)\) \(F(x)\)是积性函数. \(Min25\)筛能用的前提:质数处的\(f(p)\)值是关于\(p\) ...
- 洛谷 P3088 [USACO13NOV]挤奶牛Crowded Cows 题解
P3088 [USACO13NOV]挤奶牛Crowded Cows 题目描述 Farmer John's N cows (1 <= N <= 50,000) are grazing alo ...
- Cocos CreatorUI系统下
若本号内容有做得不到位的地方(比如:涉及版权或其他问题),请及时联系我们进行整改即可,会在第一时间进行处理. 请点赞!因为你们的赞同/鼓励是我写作的最大动力! 欢迎关注达叔小生的简书! 这是一个有质量 ...
- mysql distinct()函数 去重
mysql> select * from table1; +----------+------------+-----+---------------------+ | name_new | t ...
- 块元素&行内元素
大多数HTML 元素被定义为块级元素或内联元素.块级元素在浏览器显示时,通常会以新行来开始(和结束) block元素特点 1 总是在新行上开始: 2 高度,行高以及外边距和内边距都可控制: 3 宽度缺 ...
- flowable表简要说明
1. Flowable数据库表命名规则 ACT_RE_* ’RE’表示repository(存储).RepositoryService接口操作的表.带此前缀的表包含的是静态信息,如,流程定义,流程的资 ...
- PostgreSQL中的一些日志
1.Write Ahead Log(WAL日志)预写日志(WAL)是保证数据完整性的标准方法.在有关交易处理的大多数(如果不是全部)书籍中都可以找到详细说明. 简而言之,WAL的核心概念是,只有在记录 ...