在作出Redis群集解决方案,他跑了小半个。行表现得非常稳定
在几乎相同的经历与大家分享,我写在前面的文章数据在线服务的一些探索经验,能够做为背景阅读

应用

我们的Redis集群主要承担了下面服务:
1. 实时推荐
2. 用户画像
3. 诚信分值服务

集群状况

集群峰值QPS 1W左右,RW响应时间999线在1ms左右
整个集群:
1. Redis节点: 8台物理机;每台128G内存;每台机器上8个instance
2. Sentienl:3台虚拟机

集群方案


Redis Node由一组Redis Instance组成,一组Redis Instatnce能够有一个Master Instance。多个Slave Instance

Redis官方的cluster还在beta版本号,參看Redis cluster tutorial
在做调研的时候,以前特别关注过KeepAlived+VIP 和 Twemproxy
只是最后还是决定基于Redis Sentinel实现一套,整个项目大概在1人/1个半月

总体设计

1. 数据Hash分布在不同的Redis Instatnce上
2. M/S的切换採用Sentinel
3. 写:仅仅会写master Instance,从sentinel获取当前的master Instane
4. 读:从Redis Node中基于权重选取一个Redis Instance读取,失败/超时则轮询其它Instance
5. 通过RPC服务訪问。RPC server端封装了Redisclient,client基于jedis开发
6. 批量写/删除:不保证事务

RedisKey

public class RedisKey implements Serializable{
private static final long serialVersionUID = 1L; //每一个业务不同的family
private String family; private String key; ......
//物理保存在Redis上的key为经过MurmurHash之后的值
private String makeRedisHashKey(){
return String.valueOf(MurmurHash.hash64(makeRedisKeyString()));
} //ReidsKey由family.key组成
private String makeRedisKeyString(){
return family +":"+ key;
} //返回用户的经过Hash之后RedisKey
public String getRedisKey(){
return makeRedisHashKey();
}
.....
}

Family的存在时为了避免多个业务key冲突,给每一个业务定义自己独立的Faimily
出于性能考虑,參考Redis存储设计,实际保存在Redis上的key为经过hash之后的值

接口

眼下支持的接口包含:

public interface RedisUseInterface{
/**
* 通过RedisKey获取value
*
* @param redisKey
* redis中的key
* @return
* 成功返回value,查询不到返回NULL
*/
public String get(final RedisKey redisKey) throws Exception; /**
* 插入<k,v>数据到Redis
*
* @param redisKey
* the redis key
* @param value
* the redis value
* @return
* 成功返回"OK",插入失败返回NULL
*/
public String set(final RedisKey redisKey, final String value) throws Exception; /**
* 批量写入数据到Redis
*
* @param redisKeys
* the redis key list
* @param values
* the redis value list
* @return
* 成功返回"OK",插入失败返回NULL
*/
public String mset(final ArrayList<RedisKey> redisKeys, final ArrayList<String> values) throws Exception; /**
* 从Redis中删除一条数据
*
* @param redisKey
* the redis key
* @return
* an integer greater than 0 if one or more keys were removed 0 if none of the specified key existed
*/
public Long del(RedisKey redisKey) throws Exception; /**
* 从Redis中批量删除数据
*
* @param redisKey
* the redis key
* @return
* 返回成功删除的数据条数
*/
public Long del(ArrayList<RedisKey> redisKeys) throws Exception; /**
* 插入<k,v>数据到Redis
*
* @param redisKey
* the redis key
* @param value
* the redis value
* @return
* 成功返回"OK",插入失败返回NULL
*/
public String setByte(final RedisKey redisKey, final byte[] value) throws Exception; /**
* 插入<k,v>数据到Redis
*
* @param redisKey
* the redis key
* @param value
* the redis value
* @return
* 成功返回"OK",插入失败返回NULL
*/
public String setByte(final String redisKey, final byte[] value) throws Exception; /**
* 通过RedisKey获取value
*
* @param redisKey
* redis中的key
* @return
* 成功返回value,查询不到返回NULL
*/
public byte[] getByte(final RedisKey redisKey) throws Exception; /**
* 在指定key上设置超时时间
*
* @param redisKey
* the redis key
* @param seconds
* the expire seconds
* @return
* 1:success, 0:failed
*/
public Long expire(RedisKey redisKey, int seconds) throws Exception;
}

写Redis流程

1. 计算Redis Key Hash值
2. 依据Hash值获取Redis Node编号
3. 从sentinel获取Redis Node的Master
4.  写数据到Redis

		//获取写哪个Redis Node
int slot = getSlot(keyHash);
RedisDataNode redisNode = rdList.get(slot); //写Master
JedisSentinelPool jp = redisNode.getSentinelPool();
Jedis je = null;
boolean success = true;
try {
je = jp.getResource();
return je.set(key, value);
} catch (Exception e) {
log.error("Maybe master is down", e);
e.printStackTrace();
success = false;
if (je != null)
jp.returnBrokenResource(je);
throw e;
} finally {
if (success && je != null) {
jp.returnResource(je);
}
}

读流程

1. 计算Redis Key Hash值
2. 依据Hash值获取Redis Node编号
3. 依据权重选取一个Redis Instatnce
4.  轮询读

		//获取读哪个Redis Node
int slot = getSlot(keyHash);
RedisDataNode redisNode = rdList.get(slot); //依据权重选取一个工作Instatnce
int rn = redisNode.getWorkInstance(); //轮询
int cursor = rn;
do {
try {
JedisPool jp = redisNode.getInstance(cursor).getJp();
return getImpl(jp, key);
} catch (Exception e) {
log.error("Maybe a redis instance is down, slot : [" + slot + "]" + e);
e.printStackTrace();
cursor = (cursor + 1) % redisNode.getInstanceCount();
if(cursor == rn){
throw e;
}
}
} while (cursor != rn);

权重计算

初始化的时候,会给每一个Redis Instatnce赋一个权重值weight
依据权重获取Redis Instance的代码:

	public int getWorkInstance() {
//未定义weight。则全然随机选取一个redis instance
if(maxWeight == 0){
return (int) (Math.random() * RANDOM_SIZE % redisInstanceList.size());
} //获取随机数
int rand = (int) (Math.random() * RANDOM_SIZE % maxWeight);
int sum = 0; //选取Redis Instance
for (int i = 0; i < redisInstanceList.size(); i++) {
sum += redisInstanceList.get(i).getWeight();
if (rand < sum) {
return i;
}
} return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

Redis集群方案及实现的更多相关文章

  1. Redis集群方案介绍

    由于Redis出众的性能,其在众多的移动互联网企业中得到广泛的应用.Redis在3.0版本前只支持单实例模式,虽然现在的服务器内存可以到100GB.200GB的规模,但是单实例模式限制了Redis没法 ...

  2. Redis集群方案

    Redis集群方案 前段时间搞了搞Redis集群,想用做推荐系统的线上存储,说来挺有趣,这边基础架构不太完善,因此需要我们做推荐系统的自己来搭这个存储环境,就自己折腾了折腾.公司所给机器的单机性能其实 ...

  3. Redis集群方案怎么做?大牛给你介绍五种方案!

    Redis集群方案 Redis数据量日益增大,而且使用的公司越来越多,不仅用于做缓存,同时趋向于存储这块,这样必促使集群的发展,各个公司也在收集适合自己的集群方案,目前行业用的比较多的是下面几种集群架 ...

  4. 大厂们的 redis 集群方案

    redis 集群方案主要有两类,一是使用类 codis 的架构,按组划分,实例之间互相独立: 另一套是基于官方的 redis cluster 的方案:下面分别聊聊这两种方案: 类 codis 架构 这 ...

  5. Redis集群方案怎么做?

    转载自:https://www.jianshu.com/p/1ecbd1a88924 Redis集群方案 Redis数据量日益增大,而且使用的公司越来越多,不仅用于做缓存,同时趋向于存储这块,这样必促 ...

  6. Redis集群方案总结

    Redis集群方案总结 Redis集群方案总结Codis其余方案Redis cluster 目前,Redis中目前集群有以下几种方案: 主从复制 哨兵模式 redis cluster 代理 codis ...

  7. Redis 集群方案介绍

    由于Redis出众的性能,其在众多的移动互联网企业中得到广泛的应用.Redis在3.0版本前只支持单实例模式,虽然现在的服务器内存可以到100GB.200GB的规模,但是单实例模式限制了Redis没法 ...

  8. Redis集群方案收集

    说明: 如果不考虑客户端分片去实现集群,那么市面上基本可以说就三种方案最成熟,它们分别如下所示: 系统 贡献者 是否官方Redis实现 编程语言 Twemproxy Twitter 是 C Redis ...

  9. 基于Twemproxy的Redis集群方案(转载)

    原文地址:基于Twemproxy的Redis集群方案 概述 由于单台redis服务器的内存管理能力有限,使用过大内存redis服务器的性能急剧下降,且服务器发生故障将直接影响大面积业务.为了获取更好的 ...

  10. Redis集群方案(来自网络)

    参考: https://www.zhihu.com/question/21419897 http://www.cnblogs.com/haoxinyue/p/redis.html 为什么集群? 通常, ...

随机推荐

  1. Enhancing the Application: Advanced JDBC Features(转)

    Enhancing the Application: Advanced JDBC Features This chapter describes additional functionality th ...

  2. 【Android开发经验】Android举UI设计经验

    转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992 1.Android眼下的主流设备分辨率为480×800.720×1280.1080×1920,单位是像素.在 ...

  3. GNU名称解析

    GNU它是GNU's NOT UNIX缩写G     N    U缩写,和GNU全名GNU's NOT UNIX 中间 GNU 也GNU's NOT UNIX缩写,它使用递归方式定义GNU.

  4. ExternalInterface的简单使用方法

    ExternalInterface的简单使用方法 使用ExternalInterface调用JavaScript方法-无返回值flex代码------------------<mx:Button ...

  5. uva 11992 为矩阵更新查询段树

    http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. ALSA安装编程指南

     ALSA全指南 一.什么是ALSA ALSA是Advanced Linux Sound Architecture,高级Linux声音架构的简称,它在Linux操作系统上提供了音频和MIDI(Mu ...

  7. state pattern

    6 状态模式总结 状态模式将一个对象在不同状态下的不同行为封装在一个个状态类中,通过设置不同的状态对象可以让环境对象拥有不同的行为,而状态转换的细节对于客户端而言是透明的,方便了客户端的使用.在实际开 ...

  8. 【原创】leetCodeOj --- Find Minimum in Rotated Sorted Array II 解题报告

    题目地址: https://oj.leetcode.com/problems/find-minimum-in-rotated-sorted-array-ii/ 题目内容: Suppose a sort ...

  9. 关与 Visual.Assist.X.V10.7.1912的Crack破解补丁(vs 番茄插件的key破解方法)

    在win7系统下, 我用的是vs2012版本号. Visual Assist沿用了快10年的界面,最终有了更新,变得更加适合Win8 以及 VS2012的主题风格了 ,这也是以后软件的发展趋势,仅仅是 ...

  10. HTML的标签使用

    <p>段落标签</p>:段落标签 <hx>标题标签</hx>:标题标签,x代表1-6 <em>斜体</em>:显示的字体是斜的 ...