源:关于中值滤波算法,以及C语言实现

1、什么是中值滤波?

中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。

中值滤波可以过滤尖峰脉冲。目的在于我们对于滤波后的数据更感兴趣。滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响。

以一维信号的中值滤波举例。对灰度序列80、120、90、200、100、110、70,如果按大小顺序排列,其结果为70、80、90、10O、110、120、200,其中间位置上的灰度值为10O,则该灰度序列的中值即为100。一维信号中值滤波实际上就是用中值代替规定位置(一般指原始信号序列中心位置)的信号值。对前面所举的序列而言,中值滤波的结果是用中值100替代序列80、120、90、200、100、110、70中的信号序列中心位置值200,得到的滤波序列就是80、120、90、100、100、110、70。如果在此序列中200是一个噪声信号,则用此方法即可去除这个噪声点。

二维中值滤波算法是:对于一幅图像的象素矩阵,取以目标象素为中心的一个子矩阵窗口,这个窗口可以是3*3 ,5*5 等根据需要选取,对窗口内的象素灰度排序,取中间一个值作为目标象素的新灰度值。窗口示例如ooooxoooo上面x为目标象素,和周围o组成3*3矩阵Array,然后对这9个元素的灰度进行排序,以排序后的中间元素Array[4]为x的新灰度值,如此就完成对象素x的中值滤波,再迭代对其他需要的象素进行滤波即可。

图像处理中,中值滤波的实现方法

1:通过从图像中的某个采样窗口取出奇数个数据进行排序
2:用排序后的中值取代要处理的数据即可
 
中值滤波的算法实现过程,重点是排序,最常用的冒泡排序~~
把滤波区间的数据从小到大进行排序,然后取中值,(如果是奇数个数据,那么中值就只有一个了,如果偶数个数据,中值有两个,可以对两个数据再求平均)
下面是一个C语言实现中值滤波的函数:
unsigned char GetMedianNum(int * bArray, int iFilterLen)
{
int i,j;// 循环变量
unsigned char bTemp; // 用冒泡法对数组进行排序
for (j = ; j < iFilterLen - ; j ++)
{
for (i = ; i < iFilterLen - j - ; i ++)
{
if (bArray[i] > bArray[i + ])
{
// 互换
bTemp = bArray[i];
bArray[i] = bArray[i + ];
bArray[i + ] = bTemp;
}
}
} // 计算中值
if ((iFilterLen & ) > )
{
// 数组有奇数个元素,返回中间一个元素
bTemp = bArray[(iFilterLen + ) / ];
}
else
{
// 数组有偶数个元素,返回中间两个元素平均值
bTemp = (bArray[iFilterLen / ] + bArray[iFilterLen / + ]) / ;
} return bTemp;
}
注:bArray 是一个整形指针,我们传入的一般是一个数组,用来存储待排序的数据
&nbsp; &nbsp; iFilterLen 是滤波器的长度
&nbsp; &nbsp;用在图像处理中时,由于像素的取值范围是0~,刚好是unsigned char 的范围,所以函数的返回值是unsigned char,如果我们要处理的数是float型,或其他类型,返回值也可以更改~~返回值是bTemp,也即是我们想得到的中值
<span style="color: rgb(51, 51, 51);">下面是一个完整的C语言程序,用在图像处理中</span>
/*************************************************************************
* 函数名称:
* MedianFilter()
* 参数:
* int iFilterH - 滤波器的高度
* int iFilterW - 滤波器的宽度
* int iFilterMX - 滤波器的中心元素X坐标
* int iFilterMY - 滤波器的中心元素Y坐标
* 说明:
* 该函数对DIB图像进行中值滤波。
************************************************************************/
#define iFilterW 1
#define iFilterH 1
#define iFilterMX 1
#define iFilterMY 1
#define WIDTHBYTES(bits) (((bits) + 31) / 32 * 4) unsigned char GetMedianNum(int * bArray, int iFilterLen);
void MedianFilter(unsigned char *pImg1,unsigned char *pImg,int nWidth,int nHeight)
{
unsigned char *lpSrc; // 指向源图像的指针
unsigned char *lpDst; // 指向要复制区域的指针
int aValue[iFilterH*iFilterW]; // 指向滤波器数组的指针
int i,j,k,l; // 循环变量
int lLineBytes; // 图像每行的字节数
lLineBytes = WIDTHBYTES(nWidth * );
for ( i=;i<nWidth;i++,pImg++ )
(*pImg)=;
// 开始中值滤波
// 行(除去边缘几行)
for(i = iFilterMY; i < nHeight - iFilterH + iFilterMY + ; i++)
{
// 列(除去边缘几列)
for(j = iFilterMX; j < nWidth - iFilterW + iFilterMX + ; j++)
{
// 指向新DIB第i行,第j个象素的指针
lpDst = pImg + lLineBytes * (nHeight - - i) + j; // 读取滤波器数组
for (k = ; k < iFilterH; k++)
{
for (l = ; l < iFilterW; l++)
{
// 指向DIB第i - iFilterMY + k行,第j - iFilterMX + l个象素的指针
lpSrc = pImg1 + lLineBytes * (nHeight - - i + iFilterMY - k) + j - iFilterMX + l; // 保存象素值
aValue[k * iFilterW + l] = *lpSrc;
}
} // 获取中值
* lpDst = GetMedianNum(aValue, iFilterH * iFilterW);
}
} } unsigned char GetMedianNum(int * bArray, int iFilterLen)
{
int i,j; // 循环变量
unsigned char bTemp; // 用冒泡法对数组进行排序
for (j = ; j < iFilterLen - ; j ++)
{
for (i = ; i < iFilterLen - j - ; i ++)
{
if (bArray[i] > bArray[i + ])
{
// 互换
bTemp = bArray[i];
bArray[i] = bArray[i + ];
bArray[i + ] = bTemp;
}
}
} // 计算中值
if ((iFilterLen & ) > )
{
// 数组有奇数个元素,返回中间一个元素
bTemp = bArray[(iFilterLen + ) / ];
}
else
{
// 数组有偶数个元素,返回中间两个元素平均值
bTemp = (bArray[iFilterLen / ] + bArray[iFilterLen / + ]) / ;
} return bTemp;
}

关于中值滤波算法,以及C语言实现(转)的更多相关文章

  1. 基于FPGA的中值滤波算法实现

    在这一篇开篇之前,我需要解决一个问题,上一篇我们实现了基于FPGA的均值滤波算法的实现,最后的显示效果图上发现有一些黑白色的斑点,我以为是椒盐噪声,然后在做基于FPGA的中值滤波算法的实验时,我发现黑 ...

  2. 基于MATLAB的中值滤波算法实现

    在实时图像采集中,不可避免的会引入噪声,尤其是干扰噪声和椒盐噪声,噪声的存在严重影响边缘检测的效果,中值滤波是一种基于排序统计理论的非线性平滑计数,能有效平滑噪声,且能有效保护图像的边缘信息,所以被广 ...

  3. 3D Slicer中文教程(七)—图像中值滤波

    1.中值滤波概念 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘 ...

  4. PIE SDK中值滤波

    1.算法功能简介 中值滤波是一种最常用的非线性平滑滤波器,它将窗口内的所有像素值按高低排序后,取中间值作为中心像素的新值. 中值滤波对噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘, ...

  5. 基于Opencv的自适应中值滤波函数selfAdaptiveMedianBlur()

    7.3.3 自适应滤波器 自适应中值滤波器 对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2).本节将证明,自适应中值滤波器可以处理更大概 ...

  6. opencv-11-中值滤波及自适应中值滤波

    开始之前 在上一篇我们实现了读取噪声图像, 然后 进行三种形式的均值滤波得到结果, 由于我们自己写的均值滤波未作边缘处理, 所以效果有一定的下降, 但是总体来说, 我们得到的结果能够说明我们的算法执行 ...

  7. 中值滤波C语言优化

    中值滤波C语言优化 图像平滑是图像预处理的基本操作,本文首先用不同的方法对一张图片做预处理比较它们效果的不同,然后针对中值滤波,实现了一种快速实现.(其实是copy的opencv实现,呵呵).因为op ...

  8. 基于记忆性的中值滤波O(r)与O(1)复杂度的算法实现

    本文参考博客:https://www.cnblogs.com/Imageshop/archive/2013/04/26/3045672.html 原生的中值滤波是基于排序算法的,这样的算法复杂度基本在 ...

  9. Atitit   图像处理 平滑 也称 模糊, 归一化块滤波、高斯滤波、中值滤波、双边滤波)

    Atitit   图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenC ...

随机推荐

  1. Chapter 1 First Sight——12

    Breakfast with Charlie was a quiet event. 和查理斯吃早饭时一件安静的事情 He wished me good luck at school. I thanke ...

  2. PHP资源类型

    在PHP中,我们经常使用到资源类型变量.例如:mysql连接.文件句柄等. 这些变量无法使用标量来表示,那么在Zend内核中是如何将PHP中的资源变量与C语言中的资源衔接的呢? 一.资源变量在PHP中 ...

  3. HDU 2475 BOX 动态树 Link-Cut Tree

    Box Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) [Problem De ...

  4. Entity Framework 学习初级篇4--Entity SQL

    Entity SQL 是 ADO.NET 实体框架 提供的 SQL 类语言,用于支持 实体数据模型 (EDM).Entity SQL 可用于对象查询和使用 EntityClient 提供程序执行的查询 ...

  5. centos minimal Bind 主从服务器部署

    实验环境 两台虚拟机BindM和BindS,装的系统都是centos6.3 minimal   IP地址 主机名hostname 主DNS服务器 192.168.137.102 bindm.cas.c ...

  6. 8、代理模式(Proxy)

    其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你 ...

  7. java dom4j解析xml实例(3)

    代码运行前需要先导入dom4j架包. 需要解析的XML文件test.xml如下: <students> <student age="25"><!--如 ...

  8. ural1424 Minibus

    Minibus Time limit: 1.0 secondMemory limit: 64 MB Background Minibus driver Sergey A. Greedson has b ...

  9. (poj 3660) Cow Contest (floyd算法+传递闭包)

    题目链接:http://poj.org/problem?id=3660 Description N ( ≤ N ≤ ) cows, conveniently numbered ..N, are par ...

  10. JavaScript中call,apply,bind方法的总结

    原文链接:http://www.cnblogs.com/pssp/p/5215621.html why?call,apply,bind干什么的?为什么要学这个? 一般用来指定this的环境,在没有学之 ...