假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作

  • 2z = (z + x) + (z - x)
  • 2x = (z + x) - (z - x)

那么跟据最大公因数性质,z + x和z - x的最大公因数也为2,又因为:

  • (z + x)(z - x) = y2,两边同除以4得:
    ((z + x) / 2)((z - x) / 2) = (y / 2)2

故可令:

  • z + x = 2m2, z - x = 2n2
    其中z = m + n, x = m - n(m与n互质)

则有:

  • y2 = z2 - x2 = 2m22n2 = 4m2n2
    即y = 2mn。

综上所述,可得到下式:

  • x = m2 - n2, y = 2mn, z = m2 + n2. (m, n为任意自然数)

这里还有一个问题:题目要求统计(x, y, z)三元组的数量时只统计x,y和z两两互质的的情况,这个问题用上面的算法就可以解决了。但对于统计p的数量,题目并不限定三元组是两两互质的。但是上式不能生成所有x, y, z并不是两两互质的情况。然而假设x与y最大公因数w不为1,则z也必能被w整除,因此w为x, y, z三个数的公因数。归纳总结可知,所有非两两互质的x0, y0, z0都可由一组互质的x, y, z乘以系数得到。根据以上理论就可以快速的求解了。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAX 1000010
using namespace std;
bool vis[MAX];
int prime[MAX][],n;
int gcd(int a, int b)
{
return b == ? a : gcd(b, a%b);
}
int upper(int l, int r, int v)
{
int m;
while (l < r)
{
m = l + (r - l) / ;
if (prime[m][] <= v) l = m + ;
else r = m;
}
return r;
}
int cmp(const void*a, const void*b)
{
return ((int*)a)[] - ((int*)b)[];
}
int main()
{
int i,j,z,x,y,k=;
int imax = int(sqrt(MAX >> )+0.5),jmax;
for (i = ; i <= imax; i++)
{
jmax = int(sqrt(MAX - i*i) + 0.5);
for (j = i + ; j <= jmax; j++)
if ((i & ) + (j & )== && gcd(i, j) == )//(i&1)+(j&1)==1 一奇一偶
{
y = * i*j;
z = i*i + j*j;
x = j*j - i*i;
if (x*x+y*y==z*z&&z<=)
{
prime[k][] = x;
prime[k][] = y;
prime[k++][] = z;
}
}
}
qsort(prime,k,sizeof(prime[]),cmp);
while (scanf("%d", &n) == )
{
int a = upper(, k, n);
memset(vis, , n + );
for (i = ; i < a; i++)
for (j = ; j*prime[i][] <= n; j++)
{
vis[j*prime[i][]] = ;
vis[j*prime[i][]] = ;
vis[j*prime[i][]] = ;
}
int count = ;
for (i = ; i <= n; i++)
if (!vis[i]) count++;
printf("%d %d\n", a, count);
}
return ;
}

UVA106 - Fermat vs. Pythagoras的更多相关文章

  1. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  3. POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)

    设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y,z构成一个本原的毕达 ...

  4. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  5. Uva 106 - Fermat vs. Pythagoras 解题报告

    数论题,考查了本原勾股数(PPT) 对一个三元组(a,b,c)两两互质 且满足 a2 + b2 = c2 首先有结论 a 和 b 奇偶性不同 c总是奇数(可用反证法证明,不赘述) 设 a为奇数 b为偶 ...

  6. poj1305 Fermat vs. Pythagoras(勾股数)

    题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...

  7. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  8. 毕达哥拉斯三元组(勾股数组)poj1305

    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...

  9. SDUT Fermat’s Chirstmas Theorem(素数筛)

    Fermat's Chirstmas Theorem Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 In a letter ...

随机推荐

  1. 【Sort】Merge Sort归并排序

    归并排序运行时间O(N log N),但是由于需要线性附加内存,所以很少用于主存排序. 算法核心在于以下三条语句,分治递归,分别对左半边和右半边的数组进行排序,然后把左右半边的数组一一进行比较放入数组 ...

  2. cmstop核心

    控制器在什么时候实例化?  ---每发送一次请求,都要从入口文件开始一步步往下走 index.php入口文件-->到第二个文件(核心文件cmstop.php)中实例化controller类核心文 ...

  3. PHP中使用CURL(二)

    https不需要进行ca认证和证书中域名认证 curl_setopt($ch,CURLOPT_SSL_VERIFYHOST,false); curl_setopt($ch,CURLOPT_SSL_VE ...

  4. [ An Ac a Day ^_^ ] Codeforces Round #368 Div. 2 A B C

    昨天才回学校 刚好赶上CF所以就没写博客 不过还是水题了…… A. 比赛的时候被hack了 仔细读题才知道grey也算是黑白的 英语不好好伤心…… #include<stdio.h> #i ...

  5. dell 去鼠标版功能widnows

    桌面计算机(点击右键)----管理----设备管理器-----鼠标------选择触摸板(ps/2 兼容鼠标)---右击------跟新驱动-------浏览计算机查找------从计算机列表中选择- ...

  6. ASP.NET中的Excel操作(NPOI方式)

    代码准备: 一:实体准备 代码如下: /// <summary> /// 一个能添加到将要导出到指定行的实体类型规范 /// data:{int StartColIndex ? 0, in ...

  7. dd if=/dev/zero of=的含义是什么?Linux 下的dd命令使用详解

    http://blog.sina.com.cn/s/blog_8b5bb24f01016y3o.html 一.dd命令的解释 dd:用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换. 注意:指 ...

  8. ASP.NET中application对象的用法(面试题)

    ASP.NET中application对象的用法 本文导读:Application对象是HttpApplicationState类的一个实例,Application状态是整个应用程序全局的.Appli ...

  9. 3. JavaScript 数据类型

    1. 主要类型 字符串(String).数字(Number).布尔(Boolean).数组(Array).对象(Object).空(Null).未定义(Undefined). JavaScript 拥 ...

  10. 超界文字滚动 (id和类型两种实现方式)

    //根据元素id <!DOCTYPE html><html lang="zh-CN"><head> <meta charset=" ...