In this post, I will demonstrate dynamic remastering of the resources in RAC .
In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reconfiguration event .When one instance departs the cluster, the GRD portion of that instance needs
to be redistributed to the surviving nodes. Similarly, when a new instance enters the cluster, the GRD portions of the existing instances must be redistributed to create the GRD portion of the new instance. This is called dynamic resource  reconfiguration.
In addition to dynamic resource reconfiguration, This is called dynamic remastering. The basic idea is to master a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially
keeps track of the number of GCS requests on a per-instance and per-object basis. This means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s
resources to the instance that is accessing the object most. LMON, LMD and LMS processes are responsible for Dynamic remastering.
– Remastering can be triggered as result of
    – Manual remastering
    – Resource affinity
    – Instance crash
– CURRENT SCENARIO -
- 3 node setup
- name of the database – racdb
— SETUP –
– Get data_object_id for scott.emp
SYS>  col owner for a10
           col data_object_id for 9999999
           col object_name for a15
           select owner, data_object_id, object_name
          from dba_objects
          where owner = 'SCOTT'
            and object_name = 'EMP';
OWNER      DATA_OBJECT_ID OBJECT_NAME
———- ————– —————
SCOTT               73181 EMP
 – Get File_id and block_id of emp table
SQL>select empno, dbms_rowid.rowid_relative_fno(rowid),
                 dbms_rowid.rowid_block_number(rowid)
         from scott.emp
          where empno in (7788, 7369);
     EMPNO DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID)
———- ———————————— ————————————
      7369                                    4                                  151
      7788                                    4                                  151
– MANUAL REMASTERING –
You can manually remaster an object with oradebug command :
oradebug lkdebug -m pkey <data_object_id>
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
                 srvctl start database -d racdb
                 srvctl status database -d racdb
– Issue a select on the object from NODE2
SCOTT@NODE2> select * from  emp;
– Find the GCS resource name to be used in  the query
   x$kjbl.kjblname = resource name in hexadecimal format([id1],[id2],[type]
   x$kjbl.kjblname2 = resource name in decimal format
   Hexname will be used to query resource in V$gc_element and v$dlm_rss views
get_resource_name
SYS@NODE2>col hexname for a25
          col resource_name for a15
           select b.kjblname hexname, b.kjblname2 resource_name,
         b.kjblgrant, b.kjblrole, b.kjblrequest
          from x$le a, x$kjbl b
           where a.le_kjbl=b.kjbllockp
            and a.le_addr = (select le_addr
                              from x$bh
                             where dbablk = 151
                             and obj    = 73181
                            and class  = 1
                              and state   <> 3);
HEXNAME                   RESOURCE_NAME   KJBLGRANT   KJBLROLE KJBLREQUE
————————- ————— ——— ———- ———
[0x97][0x4],[BL]          151,4,BL        KJUSERPR           0 KJUSERNL
– Check the current master of the block –
– Note that current master of scott.emp is node1 (numbering starts from 0)
– Previous master = 32767  is a place holder indicating that prior master
   was not known, meaning first remastering of that object.hat index happened.
   Now the master is 0 which is instance 1.
– REMASTER_CNT = 1 indicating the object has been remastered only once
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
         from   dba_objects o, v$gcspfmaster_info m
        where o.data_object_id=73181
         and m.data_object_id = 73181 ;
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP                 0           32767            1
–  Use following SQL to show master and owner of the block.
 This SQL joins   x$kjbl with x$le to retrieve resource name.
– Note that current master is node1(KJBLMASTER=0) and current owner of the block is
node2(KJBLOWNER = 1)
SYS@NODE2> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
from x$kjbl
where kjblname = '[0x97][0x4],[BL]'
) kj, x$le le
where le.le_kjbl = kj.kjbllockp
order by le.le_addr;
KJBLNAME                       KJBLNAME2                       KJBLOWNER  KJBLMASTER
—————————— —————————— ———-  ———-
[0x97][0x4],[BL]               151,4,BL                                1     0
– Manually master the EMP table to node2 –
SYS@NODE2>oradebug lkdebug -m pkey 74625
– Check that the current master of the block has changed to node2 (numbering starts from 0)
– Previous master = 0 (Node1)
– REMASTER_CNT = 2 indicating the object has been remastered twice
SYS>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
        from   dba_objects o, v$gcspfmaster_info m
          where o.data_object_id=74625
           and m.data_object_id = 74625 ;
OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—— ————– ————— ————
EMP                 1               0            2
–  Find master and owner of the block. 
– Note that current owner of the block is Node2 (KJBLOWNER=1)
   from where query was issued)
– current master of the block has been changed to node2 (KJBLMASTER=1)
SYS> select kj.kjblname, kj.kjblname2, kj.kjblowner,
kj.kjblmaster
          from (select kjblname, kjblname2, kjblowner,
kjblmaster, kjbllockp
               from x$kjbl
where kjblname = '[0x97][0x4],[BL]'                     ) kj, x$le le
         where le.le_kjbl = kj.kjbllockp   
        order by le.le_addr;
KJBLNAME                       KJBLNAME2                       KJBLOWNER KJBLMASTER
—————————— —————————— ———-  ———-
[0x97][0x4],[BL]               151,4,BL                                1  1
—————————————————————————————
– REMASTERING DUE TO RESOURCE AFFINITY –


GCS masters a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially keeps track of the number of GCS requests on a per-instance and per-object basis. This
means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s resources to the instance that is accessing the object most.
X$object_policy_statistics maintains the statistics about objects and OPENs
on those objects.LCK0 process maintains these object affinity statistics.
Following parameters affect dynamic remastering due to resource affinity :
_gc_policy_limit : If an instance opens 50 more opens on an object then the other instance (controlled by _gc_policy_limit parameter), then that object is a candidate for remastering. That object is queued and LMD0 reads the queue and
initiates GRD freeze. LMON performs reconfiguration of buffer cache locks working with LMS processes. All these are visible in LMD0/LMON trace files.
_gc_policy_time : It controls how often the queue is checked to see if the remastering must be triggered or not with a default value of 10 minutes.
_gc_policy_minimum: This parameter is defined as “minimum amount of dynamic affinity activity per minute” to be a candidate for remastering. Defaults to 2500 and I think, it is lower in a busy environment.
To disable DRM completely, set _gc_policy_limit and _gc_policy_minimum to much higher value, say 10Million.  Setting the parameter _gc_policy_time to 0 will completely disable DRM, but that also means that you can not manually remaster objects. Further, $object_policy_statistics
is not maintained if DRM is disabled.
— SETUP  –-
SYS>drop table scott.test purge;
    create table scott.test as select * from sh.sales;
    insert into scott.test select * from scott.test;
    commit;
    insert into scott.test select * from scott.test;
    commit;
   insert into scott.test select * from scott.test;
    commit;
    insert into scott.test select * from scott.test;
    commit;
– Get data_object_id for scott.test
SYS> col data_object_id for 9999999
        col object_name for a15
        select owner, data_object_id, object_name, object_id
        from dba_objects
        where owner = 'SCOTT'
          and object_name = 'TEST';
OWNER                          DATA_OBJECT_ID OBJECT_NAME      OBJECT_ID
—————————— ————– ————— ———-
SCOTT                                   74626 TEST                 74626
– Check the initial values of the parameters _gc_policy_minimum and _gc_policy_time
– Enter name of the parameter when prompted
SYS>
SET linesize 235
col Parameter FOR a20
col Instance FOR a10
col Description FOR a40 word_wrapped SELECT a.ksppinm  "Parameter",
      c.ksppstvl "Instance",
       a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx AND a.indx = c.indx
  AND p.name(+) = a.ksppinm
  AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
ORDER BY a.ksppinm; Enter value for parameter: gc_policy
old  11:   AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
new  11:   AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Parameter            Instance   Description
——————– ———- —————————————-
_gc_policy_minimum   1500       dynamic object policy minimum activity
                                per minute
_gc_policy_time      10         how often to make object policy
                                decisions in minutes
– Set _gc_policy_minimum and _gc_policy_time to very small values
   so that we can demonstrate remastering
SYS>alter system set "_gc_policy_minimum" = 10 scope=spfile;
         alter system set "_gc_policy_time" = 1 scope=spfile;
– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb
                  srvctl start database -d racdb
                  srvctl status database -d racdb
– Check that parameter values have been changed to the minimum
   allowed by oracle although these values are not the ones we specified
– Enter name of the parameter when prompted
SYS>
SET linesize 235 col Parameter FOR a20 col Instance FOR a10 col Description FOR a40 word_wrapped SELECT a.ksppinm  "Parameter", c.ksppstvl "Instance",       a.ksppdesc "Description"
FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p
WHERE a.indx = b.indx
AND a.indx = c.indx  
AND p.name(+) = a.ksppinm  
AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
ORDER BY a.ksppinm; old 11: AND UPPER(a.ksppinm) LIKE UPPER('%&parameter%')
new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')
Enter value for parameter: gc_policy
Parameter            Instance   Description
——————– ———- —————————————-
_gc_policy_minimum   20         dynamic object policy minimum activity
                                per minute
_gc_policy_time      4          how often to make object policy
                                decisions in minutes
- Assign TEST to node1 manually
– Issue a select on  scott.test from node1 –
SYS@NODE1>oradebug lkdebug -m pkey 74626
SCOTT@NODE1>select * from scott.test;
– check the current master of scott.test –
– Note that current master of scott.test is node1 (numbering starts from 0)
– Previous master = 2 (node3)
– REMASTER_CNT = 3 because while I was doing this demonstartion, remastering
   was initated 2 times earlier also.
SYS@NODE1>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
                 from   dba_objects o, v$gcspfmaster_info m
                 where o.data_object_id=74626
                  and m.data_object_id = 74626 ;
OBJECT_NAME     CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST                         0               2            3
– Issue an insert statement on scott.test from node3 so that scott.test

will be remastered to node3
SCOTT@NODE3>insert into scott.test select * from test;
– check repeatedly that opens are increasing on scott.test with time
SYS@NODE1>select inst_id, sopens, xopens
          from x$object_policy_statistics
          where object=74626;
 INST_ID     SOPENS     XOPENS
———- ———- ———-
         1       3664          0
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1       7585       1305
            .
            .
            .
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1      12788      17000
SYS@NODE1>/
   INST_ID     SOPENS     XOPENS
———- ———- ———-
         1      35052      39297
– check repeatedly if remastering has been initiated –

– Note that  after some time
    . current master changes from node1CURRENT_MASTER =0) to node3 (CURRENT_MASTER =2)
    . Previous master changes from node3 ( PREVIOUS_MASTER=2) to node1( PREVIOUS_MASTER=0)
    – Remaster count increases from 3 to 4.
    .
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
         from   dba_objects o, v$gcspfmaster_info m
        where o.data_object_id=74626
            and m.data_object_id = 74626 ;
16:09:16 SYS@NODE2>/
OBJECT_NAME
 OBJECT_NAME  CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
—————–      ————– ————— ————
TEST                                             0                        2                                     3
                        .
                        .
                        .
                        .
16:12:24 SYS@NODE2>/
OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
——————————————————————————–
TEST                                                 2                     0                            4
—- REMASTERING DUE TO INSTANCE CRASH –
Presently node3 is the master of SCOTT.TEST
Let us crash node3 and monitor the remastering process
root@node3#init 6
– check repeatedly if remastering has been initiated –
– Note that scott.test has been remastered to node2 (CURRENT_MASTER=1)
– PREVIOUS_MASTER =2 and REMASTER_CNT has increased from 4 to 5
SYS@NODE2>select o.object_name, m.CURRENT_MASTER,
m.PREVIOUS_MASTER, m.REMASTER_CNT
                from   dba_objects o, v$gcspfmaster_info m
                  where o.data_object_id=74626
                  and m.data_object_id = 74626 ;
OBJECT_NAME     CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT
————— ————– ————— ————
TEST                         1               2            5
— CLEANUP —
SYS@NODE1>drop table scott.test purge;
SYa@NODE1S>
alter system reset "_gc_policy_minimum" = 10 scope=spfile;
    alter system reset "_gc_policy_time" = 1 scope=spfile; [oracle@host01 ~]$ srvctl stop database -d racdb
                   srvctl start database -d racdb
                   srvctl status database -d racdb
References:

11g R2RAC Dynamic remastering的更多相关文章

  1. RAC object remastering ( Dynamic remastering )

    RAC环境中,每个数据块都被一个instance所管控(mastered),管控数据块的instance被称作主实例(master instance).管控数据块就是说主实例(master insta ...

  2. Oracle 11g trace events

    oracle的events,是我们在做自己的软件系统时可以借鉴的 Oracle 11g trace eventsORA-10001: control file crash event1ORA-1000 ...

  3. Oracle12c版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...

  4. Oracle11g版本中未归档隐藏参数

    In this post, I will give a list of all undocumented parameters in Oracle 11g. Here is a query to se ...

  5. Oracle Extended Tracing

      Definitions A trace file is a file that contains diagnostic data used to investigate problems. Als ...

  6. RAC Cache Fusion 原理理解

    cache fusion  .   grd  .  drm   .   gcs  .   ges cache fusion  1.RAC是一个数据库执行在多个实例上.通过DLM(Distributed ...

  7. Oracle 所有字典

    select * from DBA_CONS_COLUMNS ; ---Information about accessible columns in constraint definitions s ...

  8. 关于Oracle RAC中SCN原理和机制的探索

    今天看书时看到了关于RAC中SCN的问题,为了进一步搞清楚其内部原理和机制,对该问题进行了广泛的查阅和搜索,遗憾的是,可以参考的资料很少,网上大部分是人云亦云的帖子,其中,详细介绍其内部原理和机制的资 ...

  9. Cluster的日记体系

    Cluster的日志体系 Cluster的日志体系: Oracle cluster不像数据库那样,具有丰富的视图.工具可以用来辅助诊断,他的日志和trace文件时唯一的选择.但不想oracle只有al ...

随机推荐

  1. Unicode字段也有collation

    原文:Unicode字段也有collation 转自:http://blogs.msdn.com/b/apgcdsd/archive/2011/01/11/unicode-collation.aspx ...

  2. 朝花夕拾-4-shell

    引言 shell,我们常常会用到,以其强大的功能,会帮助我们解决非常多棘手的问题.近期遇到一个问题,要跑非常多case,假设串行的执行,须要非常久.能不能让他们并行起来,但又不能全部case都并行执行 ...

  3. MongoDB(两)mongoDB基本介绍

    MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库其中功能最丰富,最像关系数据库的.他支持的数据结构很的松散,是类似json的bjson格式,因此能够存储比 ...

  4. Building Redis for use on Cygwin(转)

    This is the second time I have installed Redis for use on Cygwin in the last several months. It seem ...

  5. 减小Cookie体积

    HTTP coockie能够用于权限验证和个性化身份等多种用途.coockie内的有关信息是通过HTTP文件头来在webserver和浏览器之间进行交流的.因此保持coockie尽可能的小以降低用户的 ...

  6. 从头学起android&lt;android基本的绘图.四十六.&gt;

    在一般的图形渲染用户通常只需要重写onDraw()该方法可以是.但是假设,才能真正完成绘图操作.此外,我们需要掌握的四大核心经营类: android.graphics.Bitmap:主要表示的是一个图 ...

  7. PB控制性能TreeView

    TreeView [其它] ■TreeView控件能够以树型方式来组织项目.不仅显示直观.界面友好.并且项目的管理和操作更为方便,是当前比較流行的一个控件. 该控件的特点是在较小的空间能够分层次显示大 ...

  8. MVC4的过滤器

    过滤器 提供的四种基本类型过滤器接口,IAuthorizationFilter.IActionFilter.IResultFilter和IExceptionFilter,可通过继承对应的接口和Filt ...

  9. oracle_分区表的新增、修改、删除、合并。普通表转分区表方法

    一. 分区表理论知识Oracle提供了分区技术以支持VLDB(Very Large DataBase).分区表通过对分区列的判断,把分区列不同的记录,放到不同的分区中.分区完全对应用透明. Oracl ...

  10. ASP.NET的CMS

    最受欢迎的ASP.NET的CMS下载 1. Umbraco 项目地址 | 下载 Umbraco是一个开放源码的CMS内容管理系统,基于asp.net建立,使用mssql进行存储数据. 使用Umbrac ...