c/c++ 线性表之单向链表

线性表之单向链表

不是存放在连续的内存空间,链表中的每个节点的next都指向下一个节点,最后一个节点的下一个节点是NULL。

真实的第一个节点是头节点,头节点不存放数据,单纯为了编写程序方便。但是下面注释里写的【第一个节点】的含义是头节点的下一节点,也就是真实存放数据的第一个节点。

下面的代码实现了以下功能

函数 功能描述
push_back 从链表的最后插入节点
push_front 从链表的起始插入节点
show_list 打印出链表里每个节点的值
pop_back 删除链表最后一个节点
pop_front 删除链表起始节点
insert_val 在合适的位置插入一个节点;
比如原来的链表:1->3->NULL,当要插入的节点的值为2的时候,就会在1和3之间插入这个节点,插入后的链表:1->2->3->NULL
find 查找指定的节点
length 返回链表中节点的个数
delete_val 删除指定的节点
sort by val 排序,改变节点里的值,不改变节点之间的链条
sort by node 排序,重新排列节点
resver back 按倒序,重新排列节点(实现方法是:尾插)
resver front 按倒序,重新排列节点(实现方法是:头插)
clear 释放除了头节点之外的所有节点所占用的内存空间
destroy 释放所有节点的所占用的内存空间,包括头节点

seqnode.h

#ifndef __SEQNODE__
#define __SEQNODE__ #include <stdio.h>
#include <malloc.h>
#include <assert.h>
#include <memory.h>
#include <stdbool.h> #define ElemType int //Node代表节点,data是节点里保存的数据,next指针保存下一个节点的地址
typedef struct Node{
ElemType data;
struct Node* next;
}Node; //NodeList代表链表,first指向头节点,last指向最后一个节点,size是链表里节点的个数
typedef struct NodeList{
Node* first;
Node* last;
size_t size;
}NodeList; void init(NodeList*);
void push_back(NodeList*, ElemType);
void push_front(NodeList*, ElemType);
void pop_back(NodeList*);
void pop_front(NodeList*);
void show_list(NodeList*);
void insert_val(NodeList*, ElemType);
Node* find(NodeList*, ElemType);
void delete_val(NodeList*, ElemType);
void sort(NodeList*);
void sort1(NodeList*);
void resver(NodeList*);
void resver1(NodeList*);
void resver2(NodeList*);
void clear(NodeList*);
void destroy(NodeList*); #endif

seqnode.c

#include "seqnode.h"

//分配头节点的内存空间
void init(NodeList* list){
list->first = (Node*)malloc(sizeof(Node));
list->last = list->first;
list->first->next = NULL;
list->size = 0;
} //从链表的最后插入节点
void push_back(NodeList* list, ElemType val){
Node* p = (Node*)malloc(sizeof(Node));
assert(NULL != p);
p->data = val;
p->next = NULL; list->last->next = p;
list->last = p;
list->size++;
} void push_front(NodeList* list, ElemType val){
Node* p = (Node*)malloc(sizeof(Node));
p->data = val; //新插入节点的下一个节点指向原来链表中的第一个节点
p->next = list->first->next;
//头节点的next指向新插入的节点
list->first->next = p;
//如果是插入节点前的链表里没有如何节点,则必须要把last指向插入的节点
if(list->size == 0){
list->last = p;
}
list->size++;
} void show_list(NodeList* list){
Node* tmp = list->first->next;
while(tmp != NULL){
printf("%d->", tmp->data);
tmp = tmp->next;
}
printf("NULL\n");
} //删除最后的节点
void pop_back(NodeList* list){
if(list->size == 0)return;
Node* p = list->first;
//寻找最后节点的前一个节点,当p->next == list->last,p就是最后节点的前一个节点。
while(p->next != list->last){
p = p->next;
}
//释放最后节点所占用的空间
free(list->last);
//p变成最后节点
list->last = p;
p->next = NULL;
list->size--;
} //删除第一个的节点
void pop_front(NodeList* list){
if(list->size == 0)return;
//p就是第一个节点
Node* p = list->first->next;
//把第二个节点变成第一个节点
list->first->next = p->next;
//如果链表里只有一个节点,则必须移动last
if(list->size == 1){
list->last = list->first;
}
list->size--;
//释放第一个节点所占用的空间
free(p);
} //在合适的位置插入一个节点.
//比如原来的链表:1->3->NULL,当要插入的节点的值为2的时候,就会在1和3之间插入这个节点,插入后的链表:1->2->3->NULL
void insert_val(NodeList* list, ElemType val){
//如果链表为空直接调用尾插
if(list->size == 0){
push_back(list, val);
return;
}
Node* p = (Node*)malloc(sizeof(Node));
p->data = val;
Node* t = list->first;
do{
//t->next不是最后一个节点,并且在合适位置
if(val >= t->data && t->next != NULL && val <= t->next->data){
p->next = t->next;
t->next = p;
break;
}
//t->next是最后一个节点
if(t->next == NULL){
list->last->next = p;
list->last = p;
list->last->next = NULL;
break;
}
t = t->next;
}
while(1);
list->size++;
}
Node* find(NodeList* list, ElemType val){
if(0 == list->size){
return NULL;
}
Node* p = list->first->next;
do{
if(val == p->data){
return p;
break;
}
p = p->next;
}
while(NULL != p);
}
void delete_val(NodeList* list, ElemType val){
if(0 == list->size)return;
Node* p = list->first;
do{
if(p->next->data == val){
//p->next是最后一个节点,所以必须移动last的指向
if(NULL == p->next->next){
list->last = p;
}
free(p->next);
//p->next是要被删除的节点,所以p->next指向要被删除节点的下一个节点
p->next = p->next->next;
list->size--;
break;
}
p = p->next;
}while(NULL != p->next);
} //利用find函数进行删除
void delete_val1(NodeList* list, ElemType val){
if(0 == list->size)return;
Node* p = find(list, val);
if(NULL == p)return;
//如果要被删除的节点是最后一个节点,就直接调用尾删。
if(p == list->last){
pop_back(list);
}
//find找到是要被删除的节点,但是不知道它前面的节点的地址,所以就不无法让它前面的节点的next指向它后面的节点
//解决办法,把它后节点里的数据,赋给它,然后删除它后面的节点。如果它后面的节点是最后节点,必须修改last的指向。
else{
p->data = p->next->data;
free(p->next);
p->next = p->next->next;
if(NULL == p->next){
list->last = p;
}
list->size--;
}
}
//不重新排列节点,只是修改节点里的值,用冒泡法排序。
void sort(NodeList* list){
if(list->size == 0 || list->size == 1)return;
Node* p = list->first->next;
for(int i = 0; i < list->size-1; ++i){
for(int j = 0; j < list->size-i-1; ++j){
if(p->data > p->next->data){
p->data = p->data + p->next->data;
p->next->data = p->data - p->next->data;
p->data = p->data - p->next->data;
}
p = p->next;
}
p = list->first->next;
}
} void insert_pnt(NodeList* list, Node* node){
Node* t = list->first;
do{
if(t->next != NULL && node->data <= t->next->data){
node->next = t->next;
t->next = node;
break;
}
if(t->next == NULL){
list->last->next = node;
list->last = node;
list->last->next = NULL;
break;
}
t = t->next;
}
while(1);
list->size++;
} //重新排列节点。思路:把链表分成2个链表,第一个链表留一个节点,利用insert_val,把剩下的节点再插回第一个节点
void sort1(NodeList* list){
if(list->size == 0 || list->size == 1)return; list->size = 1;
list->last = list->first->next;
list->last->next = NULL; //n指向第二个节点
Node* n = list->first->next->next;
Node* t;
while(NULL != n){
//因为n>next在下面的insert_pnt里会被改变,所以提前把n->next方到t里保存
t = n->next;
insert_pnt(list, n);
n = t;
}
}
void push_back_pnt(NodeList* list, Node* node){
list->last->next = node;
list->last = node;
list->last->next = NULL;
list->size++;
}
//思路:把链表分成2个链表,第一个链表只有头几点,剩下的节点放在第二个链表,循环找第二个链表里的尾节点,利用尾插,把找到的尾节点插入回第一个链表。
void resver(NodeList* list){
if(list->size == 0 || list->size == 1)return; Node* e = list->last;
Node* b = list->first->next;
Node* tmp = list->first;
size_t sz = list->size; list->last = list->first;
list->size = 0; while(sz-- > 0){
//寻找最后一个节点,找到后修改e,让e为往前移动一个节点
while(tmp->next != e && b != e){
tmp = tmp->next;
}
if(b == e){
push_back_pnt(list, b);
}else{
push_back_pnt(list, tmp->next);
}
//让e为往前移动一个节点
e = tmp;
//让tmp再次指向第一个节点,目的是再从第一个节点开始,去寻找最后一个节点
tmp = b;
}
} void push_front_pnt(NodeList* list, Node* node){
node->next = list->first->next;
list->first->next = node;
list->size++;
}
//思路:把链表分成2个链表,第一个链表只有第一个节点,剩下的节点放在第二个链表,利用头插,把第二个链表里的节点再插入回第一个链表。
void resver1(NodeList* list){
if(list->size == 0 || list->size == 1)return; Node* head = list->first->next->next; list->last = list->first->next;
list->last->next = NULL;
list->size = 1; Node* tmp;
while(head != NULL){
tmp = head->next;
push_front_pnt(list, head);
head = tmp;
}
}
//和resver1的思路一样,但不调用push_front_pnt
void resver2(NodeList* list){
if(list->size == 0 || list->size == 1)return; Node* p = list->first->next->next;
list->last = list->first->next;
list->last->next = NULL; Node* q;
while(p != NULL){
q = p->next;
p->next = list->first->next;
list->first->next = p;
p = q;
}
} void clear(NodeList* list){
if(list->size == 0) return;
Node* b = list->first->next;
Node* q;
while(b != NULL){
q = b->next;
free(b);
b = q;
}
list->last = list->first;
list->last->next = NULL;
list->size = 0;
} void destroy(NodeList* list){
Node* b = list->first;
Node* q;
while(b != NULL){
q = b->next;
free(b);
b = q;
}
}

seqnodemain.c

#include "seqnode.h"

int main(){
NodeList list;
init(&list);
int select = 1;
ElemType item;
Node* node = NULL;
while(select){
printf("*****************************************\n");
printf("*** [1] push_back [2] push_front ***\n");
printf("*** [3] show_list [4] pop_back ***\n");
printf("*** [5] pop_front [6] insert_val ***\n");
printf("*** [7] find [8] length ***\n");
printf("*** [9] delete_val [10] sort by val***\n");
printf("*** [11] sort by node[12] resver back***\n");
printf("*** [13] resver front[14] clear ***\n");
printf("*** [0] quit [15*]destroy ***\n");
printf("*****************************************\n");
printf("请选择:>");
scanf("%d", &select);
if(0 == select)
break;
switch(select){
case 1:
printf("请输入要插入的数据,以-1结束>\n");
while(scanf("%d",&item) && item != -1){
push_back(&list, item);
}
show_list(&list);
break;
case 2:
printf("请输入要插入的数据,以-1结束>\n");
while(scanf("%d", &item) && item != -1){
push_front(&list, item);
}
show_list(&list);
break;
case 3:
show_list(&list);
break;
case 4:
pop_back(&list);
show_list(&list);
break;
case 5:
pop_front(&list);
show_list(&list);
break;
case 6:
printf("请输入要插入的数据>\n");
scanf("%d",&item);
insert_val(&list, item);
show_list(&list);
break;
case 7:
printf("please enter what you shoule find out>\n");
scanf("%d",&item);
node = find(&list, item);
if(node == NULL){
printf("can not find %d\n", item);
}
break;
case 8:
printf("length is %ld\n", list.size);
break;
case 9:
printf("please enter what you want to delete>\n");
scanf("%d",&item);
delete_val(&list, item);
show_list(&list);
break;
case 10:
sort(&list);
show_list(&list);
break;
case 11:
sort1(&list);
show_list(&list);
break;
case 12:
resver(&list);
show_list(&list);
break;
case 13:
resver2(&list);
show_list(&list);
break;
case 14:
clear(&list);
show_list(&list);
break;
//case 15:
//destroy(&list);
break;
default:
break;
}
} destroy(&list);
}

c/c++ 线性表之单向链表的更多相关文章

  1. 玩转C线性表和单向链表之Linux双向链表优化

    前言: 这次介绍基本数据结构的线性表和链表,并用C语言进行编写:建议最开始学数据结构时,用C语言:像栈和队列都可以用这两种数据结构来实现. 一.线性表基本介绍 1 概念: 线性表也就是关系户中最简单的 ...

  2. 数据结构C语言实现系列——线性表(单向链表)

    #include <stdio.h> #include <stdlib.h> #define NN 12 #define MM 20 typedef int elemType ...

  3. c/c++ 线性表之单向循环链表

    c/c++ 线性表之单向循环链表 线性表之单向循环链表 不是存放在连续的内存空间,链表中的每个节点的next都指向下一个节点,最后一个节点的下一个节点不是NULL,而是头节点.因为头尾相连,所以叫单向 ...

  4. [数据结构-线性表1.2] 链表与 LinkedList<T>(.NET 源码学习)

    [数据结构-线性表1.2] 链表与 LinkedList<T> [注:本篇文章源码内容较少,分析度较浅,请酌情选择阅读] 关键词:链表(数据结构)    C#中的链表(源码)    可空类 ...

  5. 线性表之单链表C++实现

    线性表之单链表 一.头文件:LinkedList.h //单链表是用一组任意的存储单元存放线性表的元素,这组单元可以是连续的也可以是不连续的,甚至可以是零散分布在内存中的任意位置. //单链表头文件 ...

  6. [数据结构 - 第3章] 线性表之单链表(C++实现)

    一.类定义 单链表类的定义如下: #ifndef SIGNALLIST_H #define SIGNALLIST_H typedef int ElemType; /* "ElemType类型 ...

  7. K:线性表的实现—链表

    单链表的概念:  采用链式存储方式存储的线性表称之为链表,链表中每个节点包含存放数据元素的值的数据域和存放指向逻辑上相邻节点的指针域.若一个节点中只包含一个指针域,则称此链表为单链表. 单链表的特点: ...

  8. 数据结构 1 线性表详解 链表、 栈 、 队列 结合JAVA 详解

    前言 其实在学习数据结构之前,我也是从来都没了解过这门课,但是随着工作的慢慢深入,之前学习的东西实在是不够用,并且太皮毛了.太浅,只是懂得一些浅层的,我知道这个东西怎么用,但是要优化.或者是解析,就不 ...

  9. 续上文----线性表之单链表(C实现)

    本文绪上文线性表之顺序表(C实现) 本文将继续使用单链表实现线性表的另外一种存储结构.这种使用链表实现的存储结构在内存中是不连续的. C实现代码如下: #include<stdio.h> ...

随机推荐

  1. Perl中的hash类型

    hash类型 hash类型也称为字典.关联数组.映射(map)等等,其实它们都是同一种东西:键值对.每一个Key对应一个Value. hash会将key/value散列后,按序放进hash桶.散列后的 ...

  2. Haskell复习笔记(一)

    Haskell笔记这是第三次总结,前两次都因为各种原因丢失了,对于Haskell我算不上什么大神,只不过在大学时为了学习算法时选择了Haskell. 当时的入门书籍选择的是<Learn You ...

  3. IdentityServer4 中文文档 -14- (快速入门)使用 ASP.NET Core Identity

    IdentityServer4 中文文档 -14- (快速入门)使用 ASP.NET Core Identity 原文:http://docs.identityserver.io/en/release ...

  4. entity framework codefirst 用户代码未处理DataException,InnerException基础提供程序在open上失败,数据库生成失败

    警告:这是一个入门级日志,如果你很了解CodeFirst,那请绕道 背景:这篇日志记录我使用Entity FrameWork CodeFirst时出现的错误和解决问题的过程,虽然有点曲折……勿喷 备注 ...

  5. 爬虫之re数据提取的使用

    本文将业务场景中最常用的几点实例,给大家列举出来,不常见的不再一一赘述.  使用urllib库可以模拟浏览器发送请求获得服务器返回的数据,下一步就是把有用的数据提取出来.数据分为两种形式:结构化和非结 ...

  6. [android] 保存文件到SD卡

    /****************2016年5月4日 更新*****************************/ 知乎:为什么很多Android应用要把文件写到/sdcard目录下而不是写到/d ...

  7. PHP中获取当前页面的URL信息

    <? //获取当前的域名: echo $_SERVER['SERVER_NAME']; //获取来源网址,即点击来到本页的上页网址 echo $_SERVER["HTTP_REFERE ...

  8. Netty实战十之编解码器框架

    编码和解码,或者数据从一种特定协议的格式到另一种格式的转换.这些任务将由通常称为编解码器的组件来处理.Netty提供了多种组件,简化了为了支持广泛的协议而创建自定义的编解码器的过程.例如,如果你正在构 ...

  9. Mac下写博客工具ecto相关资料

    下载地址: https://www.macupdate.com/app/mac/8918/ecto 相关注册码: http://www.cnblogs.com/yssgyw/p/3284501.htm ...

  10. mapreduce中文乱码,已解决

    问题: mapreduce中文乱码 原因: 再用Hadoop处理数据的时候,发现输出的时候,总是会出现乱码,这是因为Hadoop在设计编码的时候,是写死的.默认是UTF-8,所以当你处理的文件编码格式 ...