MT【247】恒成立画图像
若$|x^2+|x-a|+3a|\le2$对任意$x\in[-1,1]$恒成立,则$a$ 的取值范围_____

分析:转化为$f(x)=|x-a|+3a$的图像夹在$y=-2-x^2$与$y=2-x^2$之间.由图像易知$-\dfrac{7}{8}\le a\le0$

MT【247】恒成立画图像的更多相关文章
- MT【119】关于恒成立的一道压轴题
分析:处理恒成立问题,一般先代特殊值缩小范围.令x=0,则f(a)<f(0),容易知a<0. 排除答案C.容易理解a趋向于0时候,是可以的,排除D.在剩余的A,B选项里,显然偏向于A.因为 ...
- MT【289】含参绝对值的最大值之三
已知$a>0$,函数$f(x)=e^x+3ax^2-2e x-a+1$,(1)若$f(x)$在$[0,1]$上单调递减,求$a$的取值范围.(2)$|f(x)|\le1$对任意$x\in[0,1 ...
- MT【224】反解系数
(2011安徽省赛)$f(x)=ax^3+bx+c(a,b,c\in R),$当$0\le x \le 1$时,$0\le f(x)\le 1$,求$b$的可能的最大值. 提示:取三个点$f(0),f ...
- MT【197】存在$a,b$对于任意的$x$
已知$f(x)=ax^2+bx-\dfrac{1}{4}$,若存在$a,b\in R$,使得对于任意的$x\in[0,7],|f(x)|\le2$恒成立,求$|a|$的最大值____ 提示:$|ax^ ...
- 超全面的.NET GDI+图形图像编程教程
本篇主题内容是.NET GDI+图形图像编程系列的教程,不要被这个滚动条吓到,为了查找方便,我没有分开写,上面加了目录了,而且很多都是源码和图片~ (*^_^*) 本人也为了学习深刻,另一方面也是为了 ...
- C#_GDI+详细教程(图形图像编程基础)
第7章 C#图形图像编程基础 本章主要介绍使用C#进行图形图像编程基础,其中包括GDI+绘图基础.C#图像处理基础以及简单的图像处理技术. 7.1 GDI+绘图基础 编写图形程序时需要使用GDI( ...
- 在MFC下实现图像放大镜
当我们想仔细观察某个细微的东西时,一般都会使用放大镜.而要看清显示在计算机屏幕上的图片或文字时通常也可以借助于Windows操作系统附带的放大程序来实现.但该程序只能以固定的放大倍数去进行观看,有时并 ...
- MT【320】依次动起来
已知$ BC=6,AC=2AB, $点$ D $满足$ \overrightarrow{AD}=\dfrac{2x}{x+y}\overrightarrow{AB}+\dfrac{y}{2(x+y)} ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
随机推荐
- Vue Router 路由实现原理
一.概念 通过改变 URL,在不重新请求页面的情况下,更新页面视图. 二.实现方式 更新视图但不重新请求页面,是前端路由原理的核心之一,目前在浏览器环境中这一功能的实现主要有2种方式: 1.Hash ...
- 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题
Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...
- Day1 Numerical simulation of optical wave propagation之标量衍射理论基本原理(一)
<Numerical simulation of optical wave propagation>内容 1. 介绍光波传输的基础理论.离散采样方法.基于MATLAB平台的编码实例以及具 ...
- switch变种玩法
标准版本: switch(表达式) { case 值1: 语句体1; break; case 值2: 语句体2; break; ... default: 语句体n+; break; } switch: ...
- [转帖]HPE的软件部分到底是谁的?
英国Micro Focus公司收购惠普旗下软件部门 http://www.gongkong.com/news/201710/369740.html 搞不清楚 现在ALM 到底是谁的资产了.. 据国外媒 ...
- MyBatis源码分析1 参数映射分析
首先我们拿出之前的代码,在如图位置打上断点,开始调试 我们规定了一个mapper接口,而调用了mapper接口的getEmpByIdAndLastName,我们并没有实现这个接口,这是因为Mybati ...
- Flutter 中 JSON 解析
本文介绍一下Flutter中如何进行json数据的解析.在移动端开发中,请求服务端返回json数据并解析是一个很常见的使用场景.Android原生开发中,有GsonFormat这样的神器,一键生成Ja ...
- 小程序获取当前页面URL
var pages = getCurrentPages() //获取加载的页面 var currentPage = pages[pages.length-1] //获取当前页面的对象 var url ...
- Airflow 使用随笔(内含 TimeZone 和 Backfill 等的详解)
其实怎么部署 airflow 又哪些特性,然后功能又是如何全面都可以在 Reference 的文章里面找到,都不是重点这里就不赘述了. 这里重点谈一下我在部署完成仔细阅读文档之后觉得可以总结的一些东 ...
- 关于解决Missing Number之类的算法问题
停止刷题已经三周了,有些想念.最近总算完成了公司代码的重构,于是要继续开始学习算法. 先来看leetcode上面第268题: Given an array containing n distinct ...