/*
给定n个数的数列,要求枚举长为k的区间,求出每个区间的最长上升子序列长度 首先考虑给定n个数的数列的LIS求法:从左往右枚举第i点作为最大点的贡献,
那么往左找到第一个比a[i]大的数,设这个数下标l,那么[l+1,i-1]的后继显然是i
那么[l+1,i-1]区间,和包括第i个数的LIS都可以+1,处理完所有点后求[1,n]区间的最大值即可
区间更新显然用线段树解决,线段树叶子结点维护第i个位置被加次数,即以第i个结点为起点的LIS长度 本题是枚举长为k的区间,求每个区间的LIS,那么只要在更新时查询区间[i-k+1,i]的最大值即可
要先预处理出第一个比a[i]大的a[i]左边的数的下标 : 单调栈
*/
#include<bits/stdc++.h>
#include<stack>
using namespace std;
#define maxn 1200006
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int n,k,a[maxn],l[maxn];
int Max[maxn<<],lazy[maxn<<];
inline void pushup(int rt){
Max[rt]=max(Max[rt<<],Max[rt<<|]);
}
inline void pushdown(int rt){
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
Max[rt<<]+=lazy[rt];
Max[rt<<|]+=lazy[rt];
lazy[rt]=;
}
} void update(int L,int R,int l,int r,int rt){
if(L<=l && R>=r){
lazy[rt]++;Max[rt]++;
return;
}
pushdown(rt);
int m=l+r>>;
if(L<=m)update(L,R,lson);
if(R>m)update(L,R,rson);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l && R>=r)return Max[rt];
pushdown(rt);
int m=l+r>>,res=;
if(L<=m)res=max(res,query(L,R,lson));
if(R>m)res=max(res,query(L,R,rson));
return res;
} stack<int>stk;
int main(){
cin>>n>>k;
for(int i=;i<=n;i++)scanf("%d",&a[i]);
a[]=0x3f3f3f3f;
stk.push();
for(int i=;i<=n;i++){
while(a[i]>a[stk.top()])
stk.pop();
l[i]=stk.top();
stk.push(i);
}
/* for(int i=1;i<=n;i++)
cout<<l[i]<<" ";*/
for(int i=;i<=n;i++){
update(l[i]+,i,,n,);
if(i-k+>=)
cout<<query(i-k+,i,,n,)<<" ";
}
}

cf1132G 线段树解分区间LIS(一种全新的线段树解LIS思路)+单调栈的更多相关文章

  1. CF1092 D & E —— 思路+单调栈,树的直径

    题目:https://codeforces.com/contest/1092/problem/D1 https://codeforces.com/contest/1092/problem/D2 htt ...

  2. UVa 548 树(已知其中两种遍历, 还原树)

    题意: 给出后序遍历和先序遍历, 还原一棵树, 然后求出从根节点到叶子的最小路劲和. 分析: 已知后序遍历, 那么后序的最后一个节点就是根节点, 然后在中序中找到这个节点, 它的左边就是左子树, 它的 ...

  3. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  5. Splay(区间翻转)&树套树(Splay+线段树,90分)

    study from: https://tiger0132.blog.luogu.org/slay-notes P3369 [模板]普通平衡树 #include <cstdio> #inc ...

  6. HDU 1754 I Hate It(线段树单点替换+区间最值)

    I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...

  7. noip 借教室 线段树95分做法

    大致的思路是用线段树维护每个区间内部的最小值 段更新最小值 每次查某个区间的最小值是否满足租借要求 满足就借出去 update最小值 注意pushdown操作  还有一个从子区间提取答案的操作 提交地 ...

  8. 数据结构1 线段树查询一个区间的O(log N) 复杂度的证明

    线段树属于二叉树, 其核心特征就是支持区间加法,这样就可以把任意待查询的区间$[L, R]$分解到线段树的节点上去,再把这些节点的信息合并起来从而得到区间$[L,R]$的信息. 下面证明在线段树上查询 ...

  9. 1890. Money out of Thin Air(线段树 dfs转换区间)

    1890 将树的每个节点都转换为区间的形式 然后再利用线段树对结点更新 这题用了延迟标记 相对普通线段树 多了dfs的转换 把所要求的转换为某段区间 RE了N次 最后没办法了 记得有个加栈的语句 拿来 ...

随机推荐

  1. Django REST Framework API Guide 01

    之前按照REST Framework官方文档提供的简介写了一系列的简单的介绍博客,说白了就是翻译了一下简介,而且翻译的很烂.到真正的生产时,就会发现很鸡肋,连熟悉大概知道rest framework都 ...

  2. 《shiro》视频目录---1、权限管理-shiro

    \day01_shiro\0323\10realm支持散列.avi;\day01_shiro\0323\1权限管理原理.avi;\day01_shiro\0323\2权限管理解决方案.avi;\day ...

  3. Django学习手册 - CURD组件

    CURD CURD是一个数据库技术中的缩写词,一般的项目开发的各种参数的基本功能都是CURD.作用是用于处理数据的基本原子操作. 它代表创建(Create).更新(Update).读取(Retriev ...

  4. 加扰与加密&解扰与解密

    原文:https://blog.csdn.net/yuan892173701/article/details/8743543 加扰就是改变标准电视信号的特性,在发送端按规定处理,而加密就是在加解扰系统 ...

  5. 第五节,损失函数:MSE和交叉熵

    损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值 ...

  6. 使用多线程提高Rest服务性能

    ⒈使用Runnable异步处理Rest服务 /** *使用Runnable异步处理Rest服务 * @return */ @GetMapping("/order") public ...

  7. (转)如何用TensorLayer做目标检测的数据增强

    数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只 ...

  8. python opencv3添加opencv-contrib

    不需要编译或其他操作,只需一句话安装第三方库利用sift等特征提取算法: sudo pip3 install opencv-contrib-python 附网站:https://pypi.python ...

  9. 广联达 BIM5D 云平台---《建筑信息模型标准》解读

    广联达 BIM5D 云平台: 1.用户管理:  https://account.glodon.com/info 2.模型使用:  http://bim5d-hunan.glodon.com/api/v ...

  10. CGI,FastCGI,PHP-CGI与PHP-FPM区别详解【转】

    CGI CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上. CGI可以用任何一 ...