统计每篇文章重要的词作为这篇文章的关键词,用tf-idf来实现。生产中有很多第三包可以调用,这里记录原理,顺便熟练python

1、公式 :

计算词频TF

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

或者

计算反文档频率idf

import os
import math
import operator
filepath='H:/data/allfiles/allfiles'
doc_word = dict()
i=0
#统计每篇文章中的词频,及文章总数
for filename in os.listdir(filepath):
with open(filepath+'/'+filename,'r',encoding='utf-8') as f:
freq_word = dict()
for line in f.readlines():
words = line.strip().split(' ')
if len(words) == '':
continue
for word in words :
if freq_word.get(word,-1) == -1:
freq_word[word] = 1
else:
freq_word[word] += 1
doc_word[filename] = freq_word
i += 1
#统计idf
doc_nums = float(i)
doc_freq = dict()
for filename in doc_word.keys():
for word in doc_word[filename].keys():
if doc_freq.get(word,-1)==-1:
doc_freq[word]=1
else:
doc_freq[word]+=1
for word in doc_freq.keys():
doc_freq[word] =math.log(doc_nums/(doc_freq[word]+1))
#TF-IDF
for filename in doc_word.keys():
word_sorted = sorted(doc_word[filename].items(),key=operator.itemgetter(1),reverse=True)
for word in doc_word[filename].keys():
doc_word[filename][word] = doc_word[filename][word]*doc_freq[word]/float(word_sorted[0][1])
print (doc_word[filename])

自然语言处理之关键词提取TF-IDF的更多相关文章

  1. NLP自然语言处理 jieba中文分词,关键词提取,词性标注,并行分词,起止位置,文本挖掘,NLP WordEmbedding的概念和实现

    1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以 ...

  2. 自然语言处理工具hanlp关键词提取图解TextRank算法

    看一个博主(亚当-adam)的关于hanlp关键词提取算法TextRank的文章,还是非常好的一篇实操经验分享,分享一下给各位需要的朋友一起学习一下! TextRank是在Google的PageRan ...

  3. 自然语言处理--TF-IDF(关键词提取)

    TF-IDF算法 TF-IDF(词频-逆文档频率)算法是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它 ...

  4. 关键词提取算法TF-IDF与TextRank

    一.前言 随着互联网的发展,数据的海量增长使得文本信息的分析与处理需求日益突显,而文本处理工作中关键词提取是基础工作之一. TF-IDF与TextRank是经典的关键词提取算法,需要掌握. 二.TF- ...

  5. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  6. python实现关键词提取

    今天我来弄一个简单的关键词提取的代码 文章内容关键词的提取分为三大步: (1) 分词 (2) 去停用词 (3) 关键词提取 分词方法有很多,我这里就选择常用的结巴jieba分词:去停用词,我用了一个停 ...

  7. 关键词提取TF-IDF算法/关键字提取之TF-IDF算法

    TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与信息探勘的常用加权技术.TF的意思是词频(Term - frequency),  ...

  8. Gradle +HanLP +SpringBoot 构建关键词提取,摘要提取 。入门篇

    前段时间,领导要求出一个关键字提取的微服务,要求轻量级. 对于没写过微服务的一个小白来讲.有点赶鸭子上架,但是没办法,硬着头皮上也不能说不会啊. 首先了解下公司目前的架构体系,发现并不是分布式开发,只 ...

  9. NLP之关键词提取(TF-IDF、Text-Rank)

    1.文本关键词抽取的种类: 关键词提取方法分为有监督.半监督和无监督三种,有监督和半监督的关键词抽取方法需要浪费人力资源,所以现在使用的大多是无监督的关键词提取方法. 无监督的关键词提取方法又可以分为 ...

随机推荐

  1. MVC异步AJAX的三种方法(JQuery的Get方法、JQuery的Post方法和微软自带的异步方法)

    异步是我们在网站开发过程中必不可少的方法,MVC框架的异步方法也有很多,这里介绍三种方法: 一.JQuery的Get方法 view @{ Layout = null; } <!DOCTYPE h ...

  2. APPLE-SA-2019-3-25-3 tvOS 12.2

    APPLE-SA-2019-3-25-3 tvOS 12.2 tvOS 12.2 is now available and addresses the following: CFStringAvail ...

  3. kindeditor<=4.1.5 文件上传漏洞利用

    kindeditor<=4.1.5 文件上传漏洞 - Kindeditor <=4.1.5 file upload vulnerability and use 漏洞存影响版本:小于等于4. ...

  4. [Python]基于K-Nearest Neighbors[K-NN]算法的鸢尾花分类问题解决方案

    看了原理,总觉得需要用具体问题实现一下机器学习算法的模型,才算学习深刻.而写此博文的目的是,网上关于K-NN解决此问题的博文很多,但大都是调用Python高级库实现,尤其不利于初级学习者本人对模型的理 ...

  5. 【译】第二篇 SQL Server安全验证

    本篇文章是SQL Server安全系列的第二篇,详细内容请参考原文. 验证是检验主体的过程.主体需要唯一标识,那样SQL Server可以确定主体有哪些权限.正确的验证是提供安全访问数据库对象的必要的 ...

  6. RESTful支持

    springmvc restful 支持 - 哎幽的成长 - CSDN博客http://blog.csdn.net/u012373815/article/details/47208345 RESTfu ...

  7. Centos7 nginx报错403 forbidden

    参考链接:http://www.cnblogs.com/chinway/archive/2017/08/14/7356239.html 因为安全性的考虑这个也是默认会出现的错误,因为SELinux的存 ...

  8. Android逆向基础----APK文件结构

    参考这个博客 http://www.cnblogs.com/wangtianxj/archive/2010/06/13/1757639.html http://blog.csdn.net/bupt07 ...

  9. 解释局域(LAN)和广域网(WAN)之间的区别,它们之间的关系是什么?

    解释局域(LAN)和广域网(WAN)之间的区别,它们之间的关系是什么?

  10. 2.获取公开的漏洞信息-查询还有哪些系统补丁未堵住-查询exp

    本章内容为第一课的实战部分,请结合原创一起浏览. 微软官网 https://www.microsoft.com/zh-cn 在页脚找到TechNet 查看安全公告 MS系列微软编号在微软安全报告中存在 ...