543A - Writing Code(二维动态规划)
题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排
分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug
状态转移为
1.在第i个文件,不写代码 dp[i][j][k]=dp[i-1][j][k]
2.在第i个文件,写代码 dp[i][j][k]+=dp[i][j-1][k-v[i]]
这题巧妙在于,既往i转移,又往j和k方向转移,这样我把它形容为二维动态规划
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=500+10;
ll dp[maxn][maxn],num[maxn];
int main()
{
ios::sync_with_stdio(false);
int n,m,b,mod;
cin>>n>>m>>b>>mod;
for(int i=1;i<=n;i++)
cin>>num[i];
dp[0][0]=1;
for(int i=1;i<=n;i++)
{
int v=num[i];
for(int j=1;j<=m;j++)
for(int k=v;k<=b;k++)
dp[k][j]=(dp[k][j]+dp[k-v][j-1])%mod;
}
ll ans=0;
for(int i=0;i<=b;i++)
ans=(ans+dp[i][m])%mod;
cout<<ans<<endl;
return 0;
}
543A - Writing Code(二维动态规划)的更多相关文章
- 二维动态规划——Interleaving String
97. Interleaving String Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2 ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
- php类库PHP QR Code 二维码
php类库PHP QR Code 二维码 php类库PHP QR Code 二维码 php类库PHP QR CodePHP QR Code is open source (LGPL) library ...
- online QRcode generator , QRcode=== (Quick Response Code) , 二维条码,二维码,彩色二维码,图片二维码,
online QRcode generator , QRcode=== (Quick Response Code) , 二维条码,二维码,彩色二维码,图片二维码, 1 http://cli.i ...
- 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列
题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...
- CodeForces 543A - Writing Code DP 完全背包
有n个程序,这n个程序运作产生m行代码,但是每个程序产生的BUG总和不能超过b, 给出每个程序产生的代码,每行会产生ai个BUG,问在总BUG不超过b的情况下, 我们有几种选择方法思路:看懂了题意之后 ...
- Code Forces 543A Writing Code
题目描述 Programmers working on a large project have just received a task to write exactly mm lines of c ...
- [leetcode] 72. 编辑距离(二维动态规划)
72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...
- HDU 1117 免费馅饼 二维动态规划
思路:a[i][j]表示j秒在i位置的数目,dp[i][j]表示j秒在i位置最大可以收到的数目. 转移方程:d[i][j]=max(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+ ...
随机推荐
- C#单问号(?)与双问号(??)
1.单问号(?) 1.1 单问号运算符可以表示:可为Null类型,C#2.0里面实现了Nullable数据类型 //A.比如下面一句,直接定义int为null是错误的,错误提示为无法将null转化成i ...
- xxx.jar或者xxx.war中没有主清单属性和spring-boot-maven-plugin的作用
因为springboot本身集成了tomcat插件,所以我们可以直接使用mvn clean package命令打成jar包或者war包,然后使java -jar xxx.jar 或者 java -ja ...
- Oracle 锁机制探究
以前虽然在网上看到很多关于Oracle锁机制的描述,但总感觉哪里有缺陷不适合自己,因此花了点时间参考官网以及Tom Tyke的<Oracle 9i/10g/11g编程艺术>一书整理了一下O ...
- Not Found woff 字体库
原因是,默认在IIS上是没有添加对*.woff,*.svg文件的Mime类型,因此在客户端请求此类文件时得到的都是404. 所以我们只需要在我们对应网站下的Mime类型中添加文件对应的类型就行了 .w ...
- OkHttp简单使用
OkHttp是一个轻量优秀的网络框架.用于替代HttpUrlConnection和Apache HttpClient(android API23 6.0里已移除HttpClient,) 使用方法: 1 ...
- Linux唤醒抢占----Linux进程的管理与调度(二十三)
1. 唤醒抢占 当在try_to_wake_up/wake_up_process和wake_up_new_task中唤醒进程时, 内核使用全局check_preempt_curr看看是否进程可以抢占当 ...
- Amazon onsite behavior question
https://www.1point3acres.com/bbs/thread-307462-1-1.html http://kraftshala.com/how-to-raise-the-bar-i ...
- [转载]深入理解JavaScript系列 --汤姆大叔
深入理解JavaScript系列文章,包括了原创,翻译,转载,整理等各类型文章,如果对你有用,请推荐支持一把,给大叔写作的动力. 深入理解JavaScript系列(1):编写高质量JavaScript ...
- 【Teradata】tdlocaledef修改默认日期配置
如下所有操作需要使用root登录到TD数据库节点操作 1.获取数据库当前默认配置 //使用root登录TD数据库节点 cd /opt/teradata/tdat/tdbms/xx.xx.xx.xx/b ...
- Caused by: java.io.FileNotFoundException: velocity.log (No such file or directory)
Caused by: org.apache.velocity.exception.VelocityException: Error initializing log: Failed to initia ...