Pyspark spark-submit 集群提交任务以及引入虚拟环境依赖包攻略
网上提交 scala spark 任务的攻略非常多,官方文档其实也非常详细仔细的介绍了 spark-submit 的用法。但是对于 python 的提交提及得非常少,能查阅到的资料非常少导致是有非常多的坑需要踩。
官方文档对于任务提交有这么一段介绍,但是初次使用者依然会非常疑惑:
Bundling Your Application’s Dependencies
If your code depends on other projects, you will need to package them alongside your application in order to distribute the code to a Spark cluster. To do this, create an assembly jar (or “uber” jar) containing your code and its dependencies. Both sbt and Maven have assembly plugins. When creating assembly jars, list Spark and Hadoop as
provideddependencies; these need not be bundled since they are provided by the cluster manager at runtime. Once you have an assembled jar you can call thebin/spark-submitscript as shown here while passing your jar.For Python, you can use the
--py-filesargument ofspark-submitto add.py,.zipor.eggfiles to be distributed with your application. If you depend on multiple Python files we recommend packaging them into a.zipor.egg.
可以看到如果我们使用 java 系语言,例如 java scala 我们可以轻松的将相关的依赖环境打包成 .jar,然后在提交的时候使用官方建议使用在的姿势进行集群提交。例如使用:
sudo -u hdfs spark-submit \
--class "Excellent" \
--master yarn \
--deploy-mode cluster \
--driver-memory 2g \
--executor-memory 2g \
--executor-cores \
/home/zhizhizhi/sparktry_2.-0.1.jar
主要程序是 Excellent, 使用 yarn 进行调度,使用集群模式运行。需要分配的执行和 driver 的内存,以及执行的时候指定的核数。
其实对 python 的 submit 使用 yarn 也和这个命令差不多,我们可以使用
/etc/alternatives/spark-submit \
--master yarn \
--deploy-mode cluster \
--name md_day_dump_user \
--conf "spark.pyspark.driver.python=/home/uther/miniconda2/envs/uther/bin/python2.7" \
--conf "spark.pyspark.python=/home/uther/miniconda2/envs/uther/bin/python2.7" \
--py-files /home/uther/uther/uther.zip \
/home/uther/uther/spark_run/md_day_dump_users.py
好了让我们来谈下这里面的坑。
首先注意一下我这里显示申明了使用 /etc/alternatives/spark-submit 如果我们不使用这个申明我们会默认使用安装 pyspark 的时候给我们带的 spark-submit。
这一点非常重要,因为我们的集群使用的 CDH 部署的,所以其实很多环境变量依赖什么的 CDH 都已经给我们配置好了,使用自己的 spark-submit 就需要自己配置这些东西,可能会导致很多问题,比如你无法直接连接到目标 hive 等等等。
默认会使用
(uther) [uther@zed- ~]$ which spark-submit
~/miniconda2/envs/uther/bin/spark-submit
这一点要非常难发现。。。。。。得非常小心。
使用集群进行运行这一点感觉也有坑,按照我查阅的一些资料来看,如果使用集群调度,很有可能在分配 application master 的时候被分配到别的机器上去,这就需要别的机器也有这一套环境,否则可能会导致失败。可能会报出类似下面的问题,但是也不太确定,因为最近跑似乎每次都分配给了提交任务的节点进行执行的,之后再观察一下。
thread "main" java.io.FileNotFoundException: File
经过一段时间的观察,如果使用 yarrn 进行任务调度,的确需要在每个可以分配的节点上同样的路径下有相同的运行环境才可以保证程序的正常运行这一点要 注意。
我使用的是 miniconda 的环境,所以直接将 miniconda 的包拷贝到相同的路径下然后将权限设置成 777 就可以了。
另外最关键的一步指定虚拟环境可以使用类似命令:
--conf "spark.pyspark.driver.python=/home/uther/miniconda2/envs/uther/bin/python2.7" \
--conf "spark.pyspark.python=/home/uther/miniconda2/envs/uther/bin/python2.7" \
这个两条命令指定了集群使用哪里的环境来运行你的程序。明显我们可能会关联非常多的依赖包,使用这种方法会比较优雅。
另外 spark 提供了另外一条命令给我们引入包
--py-files /home/uther/uther/uther.zip
这条命令的意思类似于我的程序里有 import uther.xxxx.xxx or from uther.xx.xx import xxx 类似语句,我需要将 uther 当错一个 egg or zip 包来 import 。像第三方包的行为一样。
指定之后 spark 就能在执行你的代码的时候找到对应的环境了。这对在使用 pyspark 的代码结构有一定的要求,尽量将你的逻辑打包成一个 python 包来方便引用。
另外还值得一提的是,当我们操作提交代码的时候还会报出各种奇奇怪怪的错误,但是基本上分为 权限问题 | 和环境变量问题。
例如没有在 hdfs 上操作读写的权限,就需要你耐心的去 hdfs 上面把相关权限加上,这里列举一个我遇到的比较典型的问题,由于我们需要将环境部署到每一台可能生成 application master 的机器上去,所以我们所有的机器都需要部署相关的 python_env 环境。
我们可以把 miniconda 包打包好然后分别传到各个服务器上的目标路径去。
我在一切都弄好了之后还是收到如下报错:
19/03/06 21:23:36 INFO yarn.ApplicationMaster: Unregistering ApplicationMaster with FAILED (diag message: User class threw exception: java.io.IOException:
Cannot run program "/home/uther/miniconda2/envs/uther/bin/python2.7": error=13, Permission denied)
这毫无疑问是一个权限问题,但是我当时检查了我的目标文件夹包括整个 miniconda 包都已经全部 777 了究竟为啥还是没有权限?
最后我发现原来是 /home/uther 这个我的 /home 目录下的用户目录还没有设置权限,当设置完毕之后 it works!
ps:spark-6358 的一个同学和我遇到了相同的问题。
要用 yarn 调用相关的程序也记得把 yarn 加入被调用方的组,然后仔细检查相关的权限。
Trouble Shooting:
在新创建用户提交的时候还可能遇到的问题可能有,在某个机器上新创建账号并赋予权限之后,可能 hdfs 上还并没有该用户的账号。
所以我们需要在 hdfs 上也创建该用户,这里为了方便我直接通过 HUE 在 hdfs 上创建了跟新机器上一样名称的用户,就未再报出过没有权限访问 /user 权限不足的问题。
另外有一点也值得注意,我尝试在我经常使用的 zed-2 上试图访问集群上的执行日志
yarn logs -applicationId application_1572242315020_51855
却一直得到如下输出
19/12/06 14:56:36 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
19/12/06 14:56:38 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)
19/12/06 14:56:39 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 1 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)
19/12/06 14:56:40 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 2 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)
19/12/06 14:56:41 INFO ipc.Client: Retrying connect to server: 0.0.0.0/0.0.0.0:8032. Already tried 3 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleep
起初我一直怀疑是连接问题或者配置问题,但是检查了一圈发现都没有。并且以前可以正常访问现在却突然不可以了。
于是去逐一查找问题,最后发现是因为我们提交 submit 任务的机器目前已经资源问题已经被踢出了 NodeManager 所以无法再和 ResourceManager 通信了。
所以可以换台机器看,或者重新将其加入即可。
Reference:
https://zhuanlan.zhihu.com/p/43434216 spark-python版本依赖与三方模块方案
https://spark.apache.org/docs/2.2.0/submitting-applications.html 官方 Submitting Applications 文档
https://issues.apache.org/jira/browse/SPARK-6358
Pyspark spark-submit 集群提交任务以及引入虚拟环境依赖包攻略的更多相关文章
- spark yarn 集群提交kafka代码
配置好hadoop的环境,具体根据http://blog.csdn.net/u010638969/article/details/51283216博客所写的进行配置. 运行start-dfs.sh启动 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...
- spark在集群上运行
1.spark在集群上运行应用的详细过程 (1)用户通过spark-submit脚本提交应用 (2)spark-submit脚本启动驱动器程序,调用用户定义的main()方法 (3)驱动器程序与集群管 ...
- Spark的集群管理器
上篇文章谈到Driver节点和Executor节点,但是如果想要运行Driver节点和Executor节点,就不能不说spark的集群管理器.spark的集群管理器大致有三种,一种是自带的standa ...
- 4. Spark在集群上运行
*以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第四部分是讲的是Spark在集群上运行的知识点. 一.Spark应用组件介绍 二.Spark在集群运行过程 三.Spark配置 ...
- 安装spark ha集群
安装spark ha集群 1.默认安装好hadoop+zookeeper 2.安装scala 1.解压安装包 tar zxvf scala-2.11.7.tgz 2.配置环境变量 vim /etc/p ...
- (二)win7下用Intelij IDEA 远程调试spark standalone 集群
关于这个spark的环境搭建了好久,踩了一堆坑,今天 环境: WIN7笔记本 spark 集群(4个虚拟机搭建的) Intelij IDEA15 scala-2.10.4 java-1.7.0 版本 ...
- Yarn集群的搭建、Yarn的架构和WordCount程序在集群提交方式
一.Yarn集群概述及搭建 1.Mapreduce程序运行在多台机器的集群上,而且在运行是要使用很多maptask和reducertask,这个过程中需要一个自动化任务调度平台来调度任务,分配资源,这 ...
随机推荐
- 基于Spring Boot和Shiro的后台管理系统FEBS
FEBS是一个简单高效的后台权限管理系统.项目基础框架采用全新的Java Web开发框架 —— Spring Boot 2.0.3,消除了繁杂的XML配置,使得二次开发更为简单:数据访问层采用Myba ...
- git&github入门使用
一.在Linux上安装Git 首先,你可以试着输入git,看看系统有没有安装Git,没有就yum一个,反正也是自己玩玩 二.版本库创建 什么是版本库呢?版本库又名仓库,英文名repository,你可 ...
- jenkins使用1----初始化设置
####一.基本设置 1.首先找到系统管理 2.再找到全局配置一把黄色的锁头 3.新增JDK.Maven等 别名随便 下面的值添加jdk在jenkins这台机器上的位置,如果没找到可以点击自动安装,并 ...
- docker 11 docker的commit操作
docker commit :表示提交一个容器的副本使之成为新的镜像.假如我们在docker上运行了一个tomcat的容器,对Tomcat容器进行了修改操作,然后我们将修改操作后的tomcat进行co ...
- jvm 年轻代、年老代、永久代
关键字约定 Young generation –>新生代 Tenured / Old Generation –>老年代 Perm Area –>永久代 年轻代: 所有新生 ...
- node.js如何引用其它js文件
以Java来说,比如要实现第三方存储,我可能需要导入对应的库,以maven为例,使用腾讯云或者七牛云.阿里云,我需要导入对应的maven依赖.再比如,有些时候我们封装某个类,而那个类不在该包下,我们需 ...
- Gym101237C The Palindrome Extraction Manacher、SAM、倍增
传送门 假设字符串\(B,D\)满足\(|B| \geq |D|\),那么一定会有\(B=rev(D)+T\),其中\(T\)是一个回文串. 考虑枚举回文串\(T\)的中心\(p\),找到以\(p\) ...
- 20175234 数据库MySQL(课下作业)
20175234 数据库MySQL(课下作业) 内容: 1.下载附件中的world.sql.zip, 参考http://www.cnblogs.com/rocedu/p/6371315.html#SE ...
- C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 客户端多网络支持
客户端可以支持灵活的,中间层连接选择,由于我们系统的定位架构大型信息系统的,所以全国各地,甚至国外的用户也会有,所以需要支持全网络配置,只要配置了中间层,可以选择连接哪个中间层的服务程序.客户端可以进 ...
- python事物管理及同步锁
我们经常会遇到这样子的问题,我给朋友赚钱100,分为两步: 1)我的账户-100 2)朋友账户 +100 看似需求很简单,但是如果在上面的步骤1)结束后,系统崩溃了怎么办? 数据库中有事物管理,也就是 ...