HDU 5950 Recursive sequence(矩阵快速幂)
题目链接:Recursive sequence
题意:给出前两项和递推式,求第n项的值。
题解:递推式为:$F[i]=F[i-1]+2*f[i-2]+i^4$
主要问题是$i^4$处理,容易想到用矩阵快速幂,那么$i^4$就需要从$(i-1)$转移过来。
$ i^4 = (i-1)^4 + 4*(i-1)^3 + 6*(i-1)^2 + 4*(i-1) + 1$
$f_i$ $f_{i-1}$ $i^4$ $i^3$ $i^2$ $i$ $1$ = $f_{i-1}$ $f_{i-2}$ $(i-1)^4$ $(i-1)^3$ $(i-1)^2$ $(i-1)$ $1$ *
$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
4 & 0 & 4 & 1 & 0 & 0 & 0 \\
6 & 0 & 6 & 3 & 1 & 0 & 0 \\
4 & 0 & 4 & 3 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 7
using namespace std; typedef long long ll;
const ll mod=; struct mat
{
ll m[N][N]=
{
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,}
};
}; mat mul(mat a,mat b)
{
mat ans;
int i,j,k;
for(i=;i<N;i++)
for(j=;j<N;j++)
ans.m[i][j]=; for(i=;i<N;i++)
for(j=;j<N;j++)
for(k=;k<N;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
return ans;
} ll matpow(int p,ll A,ll B)
{
mat ans,tmp;
int i,j;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
ans.m[i][j]=;
p-=;
ans.m[][]=B;ans.m[][]=A;
ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;
while(p)
{
if(p&) ans=mul(ans,tmp);
tmp=mul(tmp,tmp);
p=p>>;
}
return ans.m[][];
} int main(){
int t;
scanf("%d",&t);
while(t--){
ll M,A,B;
scanf("%lld%lld%lld",&M,&A,&B);
printf("%lld\n",matpow(M,A,B)%mod);
}
return ;
}
HDU 5950 Recursive sequence(矩阵快速幂)的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
随机推荐
- 分析一个react项目
目录结构 下面是使用npx create-react-app web-app来创建的一个项目(已经删除了多余的文件) web-app ├── node_modules │ ├── ....... ...
- 介绍Ajax与jQuery技术
Ajxs技术(异步的JavaScript与XML)已有多种技术的组合 Ajax的优点是什么? 1.可以实现客户端的异步请求操作2.进而在不需要刷新页面的情况下与服务器进行通信,减少用户的等待时间3.减 ...
- python爬虫之MongoDB测试环境安装
一. 下载 从http://www.mongodb.org/downloads地址中下载:mongodb-linux-x86_64-2.4.11.tar 二. 安装 1>设置mongoDB ...
- Laravel 出现 No application encryption key has been specified.
若文件根目录下没有 .env 1..env.example 改名使用命令 copy 修改为 .env 2.使用命令 php artisan key:generate 获取密码,自动保存到 .env3 ...
- 在windows 7上安装TensorFlow
TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习.目前被50个团队用于研究和生产许多Google商业产品,如语音识别.Gmail.Google 相册和搜索,其中许多产品曾使用 ...
- 网站滚动n个像素后,头部固定
//固顶 $(window).scroll(function() { var top = $(window).scrollTop(); if(top>=1200){ $(".x_men ...
- 日志与python日志组件logging
1. 日志的相关概念: (1)日志的作用: a. 开发人员进行程序调试 b. 开发人员定位程序故障的位置 c. 运维人员观察应用运行是否正常 (2)日志的等级 a. DEBUG 最详细的日志,用于问题 ...
- JSP从入门到精通
1. jsp开发环境配置 在windows下配置jsp的开发环境: 假设已经安装好了jdk,下面来配置tomcat 去http://tomcat.apache.org 下载tomcat windows ...
- 错误模块名称: KERNELBASE.dll错误
今天在部署一个C/S程序的时候出了bug,日志都没有记载:本地调试当然是没问题的,所以不是代码问题,百度之发现KERNELBASE.dll这个文章说的比较靠谱,仔细研究了自己的配置文件后,果然是配置文 ...
- 二、kubernetes
一.kubernetes(简称k8s) 集群示意图 Kubernetes工作模式server-client,Kubenetes Master提供集中化管理Minions.部署1台Kubernetes ...