HDU 5950 Recursive sequence(矩阵快速幂)
题目链接:Recursive sequence
题意:给出前两项和递推式,求第n项的值。
题解:递推式为:$F[i]=F[i-1]+2*f[i-2]+i^4$
主要问题是$i^4$处理,容易想到用矩阵快速幂,那么$i^4$就需要从$(i-1)$转移过来。
$ i^4 = (i-1)^4 + 4*(i-1)^3 + 6*(i-1)^2 + 4*(i-1) + 1$
$f_i$ $f_{i-1}$ $i^4$ $i^3$ $i^2$ $i$ $1$ = $f_{i-1}$ $f_{i-2}$ $(i-1)^4$ $(i-1)^3$ $(i-1)^2$ $(i-1)$ $1$ *
$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
4 & 0 & 4 & 1 & 0 & 0 & 0 \\
6 & 0 & 6 & 3 & 1 & 0 & 0 \\
4 & 0 & 4 & 3 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix}$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 7
using namespace std; typedef long long ll;
const ll mod=; struct mat
{
ll m[N][N]=
{
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,},
{,,,,,,}
};
}; mat mul(mat a,mat b)
{
mat ans;
int i,j,k;
for(i=;i<N;i++)
for(j=;j<N;j++)
ans.m[i][j]=; for(i=;i<N;i++)
for(j=;j<N;j++)
for(k=;k<N;k++)
ans.m[i][j]=(ans.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
return ans;
} ll matpow(int p,ll A,ll B)
{
mat ans,tmp;
int i,j;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
ans.m[i][j]=;
p-=;
ans.m[][]=B;ans.m[][]=A;
ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;ans.m[][]=;
while(p)
{
if(p&) ans=mul(ans,tmp);
tmp=mul(tmp,tmp);
p=p>>;
}
return ans.m[][];
} int main(){
int t;
scanf("%d",&t);
while(t--){
ll M,A,B;
scanf("%lld%lld%lld",&M,&A,&B);
printf("%lld\n",matpow(M,A,B)%mod);
}
return ;
}
HDU 5950 Recursive sequence(矩阵快速幂)的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
随机推荐
- windows下使用cmake编译zlib与libpng libjpeg
win7下使用VS2010编译jpeglib 1.下载源代码下载地址:http://www.ijg.org/files/, 选择最新版本的windows版本压缩包,进行下载. jpeg ...
- babel(一)
一.babel npm babel src/index.js -d lib 二.@babel/core @babel/cli @babel/core 转换语法核心 @babel/cli 执行 ...
- [转帖]Docker的daemon.json的作用
Docker(十六)-Docker的daemon.json的作用 https://www.cnblogs.com/zhuochong/p/10070434.html jfrog 培训的时候 说过这个地 ...
- Appscanner实验还原code3
# Author: Baozi #-*- codeing:utf-8 -*- import _pickle as pickle from sklearn import ensemble import ...
- python之路--网络编程之socket
一 . 网络编程 CS架构 客户端服务端架构 服务端:提供服务的 客户端:享受服务的 BS架构:浏览器和服务端 网络通信流程: 集线器:将所有连接上它的电脑全部联通起来 交换机:升级版的集线器 网卡: ...
- shell中的>,2>&1,&>file 解析记录
0 表示标准输入1 表示标准输出2 表示标准错误输出> 默认为标准输出重定向,与 1> 相同2>&1 意思是把 标准错误输出 重定向到 标准输出.&> ...
- React Native & Android & iOS
React Native & Android & iOS React Native & Android & iOS https://facebook.github.io ...
- Navicat软件安装
Navicat_10.1.7永久注册码 NAVH-WK6A-DMVK-DKW3
- ajax获得后台传来的一个json值,在js中获得其中的属性值
首先 ajax的dataType需要设置为json, 默认的text获取属性值在jquery3.2.1中尝试不成功 获得属性值的方式: 类似数组,键值对的方式 下面例子: 设置dataType为jso ...
- delphi 怎么实现主窗口退出时,有一个提示框?
无论点窗口上的[按钮]还是[右上角的叉],能出现一个提示窗口,“是”-退出窗口,“否”-重新登录(调出登录窗口),“取消”-返回.MessageBox能实现吗?还是要调用新窗口(我调用窗口,有些错误) ...