0.目录

1.参考
2.结论
    (1)通过 t.setDaemon(True) 将子线程设置为守护进程(默认False),主线程代码执行完毕后,python程序退出,无需理会守护子线程的状态。
    (2) t.join() 用于阻塞主线程,可以想象成将某个子线程的执行过程插入(join)到主线程的时间线上,主线程的后续代码延后执行。注意和 t.start() 分开写在两个for循环中。
    (3)第一个for循环同时启动了所有子线程,随后在第二个for循环中执行t.join() ,主线程实际被阻塞的总时长==其中执行时间最长的一个子线程。
3.验证过程

1.参考

C:\Program Files\Anaconda2\Lib\threading.py

    def daemon(self):
"""A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False. The entire Python program exits when no alive non-daemon threads are
left. """
    def join(self, timeout=None):
"""Wait until the thread terminates. This blocks the calling thread until the thread whose join() method is
called terminates -- either normally or through an unhandled exception
or until the optional timeout occurs. When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
isAlive() after join() to decide whether a timeout happened -- if the
thread is still alive, the join() call timed out. When the timeout argument is not present or None, the operation will
block until the thread terminates. A thread can be join()ed many times. join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception. """

2.结论

(1)通过 t.setDaemon(True) 将子线程设置为守护进程(默认False),主线程代码执行完毕后,python程序退出,无需理会守护子线程的状态。

(2) t.join() 用于阻塞主线程,可以想象成将某个子线程的执行过程插入(join)到主线程的时间线上,主线程的后续代码延后执行。注意和 t.start() 分开写在两个for循环中。

(3)第一个for循环同时启动了所有子线程,随后在第二个for循环中执行t.join() ,主线程实际被阻塞的总时长==其中执行时间最长的一个子线程。

3.验证过程

(1)子线程默认为【非守护线程】,主线程代码执行完毕,各子线程继续运行,直到所有【非守护线程】结束,python程序退出。

#!usr/bin/env python
#coding:utf-8
import time
import random
import logging import thread
import threading
from Queue import Queue lock = threading.Lock() #'function-call ownership'
rlock = threading.RLock() #thread ownership def get_logger():
logger = logging.getLogger("threading_example")
logger.setLevel(logging.DEBUG) # fh = logging.FileHandler("d:/threading.log")
fh = logging.StreamHandler()
fmt = '%(asctime)s - %(threadName)-10s - %(levelname)s - %(message)s'
formatter = logging.Formatter(fmt)
fh.setFormatter(formatter) logger.addHandler(fh)
return logger
logger = get_logger()
################################# class MyThread(threading.Thread):
def __init__(self, number):
threading.Thread.__init__(self)
self.number = number
def run(self):
for i in range(2):
logger.debug(i)
time.sleep(self.number) def main():
logger.debug('MainThread Start')
threads = [MyThread(3-i) for i in range(3)] for t in threads:
t.start() logger.debug('MainThread End') if __name__ == '__main__':
main()

输出:

2017-08-15 17:04:12,512 - MainThread - DEBUG - MainThread Start
2017-08-15 17:04:12,512 - Thread-1 - DEBUG - 0
2017-08-15 17:04:12,513 - Thread-2 - DEBUG - 0
2017-08-15 17:04:12,513 - Thread-3 - DEBUG - 0
2017-08-15 17:04:12,513 - MainThread - DEBUG - MainThread End
2017-08-15 17:04:13,513 - Thread-3 - DEBUG - 1
2017-08-15 17:04:14,513 - Thread-2 - DEBUG - 1
2017-08-15 17:04:15,513 - Thread-1 - DEBUG - 1

(2) t.setDaemon(True), 主线程代码执行完毕,直接退出python程序,无需理会【守护】子线程的状态。

def main():
logger.debug('MainThread Start')
threads = [MyThread(3-i) for i in range(3)] for t in threads:
t.setDaemon(True) #将子线程设置为守护进程
t.start() logger.debug('MainThread End')

输出:

2017-08-15 17:06:20,822 - MainThread - DEBUG - MainThread Start
2017-08-15 17:06:20,822 - Thread-1 - DEBUG - 0
2017-08-15 17:06:20,823 - Thread-2 - DEBUG - 0
2017-08-15 17:06:20,823 - MainThread - DEBUG - MainThread End
2017-08-15 17:06:20,823 - Thread-3 - DEBUG - 0

(3)错误用法: d t1.join()阻塞了主线程的for循环,t1结束后才执行t2.start()...实际就变成了单线程顺序执行。

def main():
logger.debug('MainThread Start')
threads = [MyThread(3-i) for i in range(3)] for t in threads:
t.start()
t.join()
logger.debug('{} start() join() activeCount: {}'.format(t.getName(), threading.activeCount())) logger.debug('MainThread End')

输出:

2017-08-15 17:17:38,219 - MainThread - DEBUG - MainThread Start
2017-08-15 17:17:38,230 - Thread-1 - DEBUG - 0
2017-08-15 17:17:41,230 - Thread-1 - DEBUG - 1
2017-08-15 17:17:44,232 - MainThread - DEBUG - Thread-1 start() join() activeCount: 1
2017-08-15 17:17:44,232 - Thread-2 - DEBUG - 0
2017-08-15 17:17:46,232 - Thread-2 - DEBUG - 1
2017-08-15 17:17:48,233 - MainThread - DEBUG - Thread-2 start() join() activeCount: 1
2017-08-15 17:17:48,233 - Thread-3 - DEBUG - 0
2017-08-15 17:17:49,234 - Thread-3 - DEBUG - 1
2017-08-15 17:17:50,234 - MainThread - DEBUG - Thread-3 start() join() activeCount: 1
2017-08-15 17:17:50,234 - MainThread - DEBUG - MainThread End

(4)异常用法:只对for循环的最后一个子线程执行了t.join() ,如果该子线程的执行时长不是所有子线程中最久的,可能达不到预期效果。

def main():
logger.debug('MainThread Start')
# threads = [MyThread(3-i) for i in range(3)]
threads = [MyThread((3-i)*2) for i in range(3)] #修改了等待时间 for t in threads:
t.start() logger.debug('MainThread ing')
# for t in threads:
t.join()
logger.debug('{} is_alive: {} join() activeCount: {}'.format(t.getName(), t.is_alive(), threading.activeCount()))
logger.debug('MainThread End')

输出:

2017-08-15 18:18:10,924 - MainThread - DEBUG - MainThread Start
2017-08-15 18:18:10,927 - Thread-1 - DEBUG - 0
2017-08-15 18:18:10,930 - Thread-2 - DEBUG - 0
2017-08-15 18:18:10,931 - Thread-3 - DEBUG - 0
2017-08-15 18:18:10,931 - MainThread - DEBUG - MainThread ing
2017-08-15 18:18:12,931 - Thread-3 - DEBUG - 1
2017-08-15 18:18:14,931 - Thread-2 - DEBUG - 1
2017-08-15 18:18:14,931 - MainThread - DEBUG - Thread-3 is_alive: False join() activeCount: 3
2017-08-15 18:18:14,931 - MainThread - DEBUG - MainThread End
2017-08-15 18:18:16,928 - Thread-1 - DEBUG - 1

(5)正常用法:第二个for循环保证每一个子线程都执行了t.join(), 虽然t1运行结束后才执行t2.join(), 但是第一个for循环已经启动了所有子线程,所以主线程实际被阻塞的总时长==其中执行时间最长的一个子线程。

def main():
logger.debug('MainThread Start')
# threads = [MyThread(3-i) for i in range(3)]
threads = [MyThread((i+1)*2) for i in range(3)] #修改了等待时间 for t in threads:
t.start() logger.debug('MainThread ing')
for t in threads:
logger.debug('{} is_alive: {} join() activeCount: {}'.format(t.getName(), t.is_alive(), threading.activeCount()))
t.join()
logger.debug('MainThread End')

输出:

2017-08-15 17:30:00,499 - MainThread - DEBUG - MainThread Start
2017-08-15 17:30:00,499 - Thread-1 - DEBUG - 0
2017-08-15 17:30:00,500 - Thread-2 - DEBUG - 0
2017-08-15 17:30:00,500 - Thread-3 - DEBUG - 0
2017-08-15 17:30:00,500 - MainThread - DEBUG - MainThread ing
2017-08-15 17:30:00,500 - MainThread - DEBUG - Thread-1 is_alive: True join() activeCount: 4
2017-08-15 17:30:02,500 - Thread-1 - DEBUG - 1
2017-08-15 17:30:04,500 - Thread-2 - DEBUG - 1
2017-08-15 17:30:04,500 - MainThread - DEBUG - Thread-2 is_alive: True join() activeCount: 3
2017-08-15 17:30:06,500 - Thread-3 - DEBUG - 1
2017-08-15 17:30:08,503 - MainThread - DEBUG - Thread-3 is_alive: True join() activeCount: 2
2017-08-15 17:30:12,500 - MainThread - DEBUG - MainThread End

python多线程之t.setDaemon(True) 和 t.join()的更多相关文章

  1. python多线程之threading模块

    threading模块中的对象 其中除了Thread对象以外,还有许多跟同步相关的对象 threading模块支持守护线程的机制 Thread对象 直接调用法 import threading imp ...

  2. python多线程之Threading

    什么是线程? 线程是操作系统内核调度的基本单位,一个进程中包含一个或多个线程,同一个进程内的多个线程资源共享,线程相比进程是“轻”量级的任务,内核进行调度时效率更高. 多线程有什么优势? 多线程可以实 ...

  3. python多线程之Event(事件)

    #!/usr/bin/env python # -*- coding: utf-8 -*- import time from threading import Thread, Event import ...

  4. “死锁” 与 python多线程之threading模块下的锁机制

    一:死锁 在死锁之前需要先了解的概念是“可抢占资源”与“不可抢占资源”[此处的资源可以是硬件设备也可以是一组信息],因为死锁是与不可抢占资源有关的. 可抢占资源:可以从拥有他的进程中抢占而不会发生副作 ...

  5. python多线程之Condition(条件变量)

    #!/usr/bin/env python # -*- coding: utf-8 -*- from threading import Thread, Condition import time it ...

  6. python多线程之semaphore(信号量)

    #!/usr/bin/env python # -*- coding: utf-8 -*- import threading import time import random semaphore = ...

  7. python多线程之threading、ThreadPoolExecutor.map

    背景: 某个应用场景需要从数据库中取出几十万的数据时,需要对每个数据进行相应的操作.逐个数据处理过慢,于是考虑对数据进行分段线程处理: 方法一:使用threading模块 代码: # -*- codi ...

  8. python 线程之_thread

    python 线程之_thread _thread module: 基本用法: def child(tid): print("hello from child",tid) _thr ...

  9. python 线程之 threading(四)

    python 线程之 threading(三) http://www.cnblogs.com/someoneHan/p/6213100.html中对Event做了简单的介绍. 但是如果线程打算一遍一遍 ...

随机推荐

  1. 【SCOI2010】序列操作

    各种繁琐的线段树标记操作...赤裸裸的码农题. 调了一个晚上,最后写篇题解. 题解亮点:代码短,~~跑得慢(连第一页都没挤进去)~~ 其实我跟你们说啊,代码短是好事~~(这里不是说压行好,我的代码不压 ...

  2. 025_lua脚本语言

    一.--cat /opt/nginx/conf/conf.dlua_package_path '/opt/nginx/conf/lua/?.lua;;'; --lua模块路径,其中”;;”表示默认搜索 ...

  3. springboot:集成fastjson(教训)

    网上有很多介绍,主要有两种. 1.在启动类中注入bean /** * 集成fastjson * * @return */ @Bean public HttpMessageConverters fast ...

  4. python学习第4天

    03 初识列表 why: 字符串的缺点: 1,只能存储少量的数据. 2,s = '1True[1,2,3]' 无论索引,切片 获取的都是字符串类型,单一,转化成它原来的类型还需要再一步转换. int( ...

  5. python 基础 three day

    本节主要内容: 一. python基本数据类型有哪些? 1. int  ==>  整数.主要用来进行数学计算. 2. str ==> 字符串,可以保存少量数据并进行相应的操作 3. boo ...

  6. Ex 7_21 在一个流网络中,一条边被称为是临界的...第十三次作业

    如果原图中的一条边e(u,v)是临界边,则在求解最大流的过程中这条边的流量将会被占满,即在残量图中只存在反向边e(v,u),不存在正向边e(u,v).但是残量图中并不是所有的只存在反向边的顶点对之间的 ...

  7. 【原创】大叔经验分享(30)CM开启kerberos

    kerberos安装详见:https://www.cnblogs.com/barneywill/p/10394164.html 一 为CM创建用户 # kadmin.local -q "ad ...

  8. Metrics介绍和Spring的集成

    参考: http://colobu.com/2014/08/08/Metrics-and-Spring-Integration/ https://www.cnblogs.com/yangecnu/p/ ...

  9. 【转】nvidia-smi 命令解读

    nvidia-smi是linux下用来查看GPU使用情况的命令.具体的参数信息详见 原文:http://blog.csdn.net/sallyxyl1993/article/details/62220 ...

  10. CSS margin合并

    外边距合并 块的顶部外边距和底部外边距有时被组合(折叠)为单个外边距,其大小是组合到其中的最大外边距 发生外边距合并的三种基本情况 1. 相邻的兄弟姐妹元素 <div id="marg ...