HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)
题意
给个无向图,无重边和自环,问最少需要多少路径把边覆盖了。并输出相应路径
分析
首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是 max(1,度数为奇数点的个数/2)。然后就是求欧拉路径了,先将块内度数为奇数的点找出来,留下两个点,其余两两连上虚边,这样我们选择从一个奇数点出发到另一个奇数点,求出一条欧拉路径,统计总路径数。接着就dfs,注意一些细节。
附赠一个求欧拉回路的fleury算法:https://blog.csdn.net/u011466175/article/details/18861415
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define eps 0.0000000001
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = + ;
const int maxm = + ;
const int mod = 1e9+; struct ND{
int v,nxt;
ND(){}
ND(int _v,int _nxt):v(_v),nxt(_nxt){}
}e[maxn*];
bool pvis[maxn],evis[maxn*];
int head[maxn],du[maxn],tot;
int n,m,cnt;
vector<int> ans[maxn],odd;
void init(){
cnt=tot=;
memset(head,-,sizeof(head));
memset(du,,sizeof(du));
memset(pvis,false,sizeof(pvis));
memset(evis,false,sizeof(evis));
for(int i=;i<=n;i++) ans[i].clear();
}
void addedge(int u,int v){
e[tot]=ND(v,head[u]);head[u]=tot++;
e[tot]=ND(u,head[v]);head[v]=tot++;
}
void dfs1(int u){
pvis[u]=true;
if(du[u]%) odd.push_back(u);//同一联通块里奇数度的点
for(int i=head[u];~i;i=e[i].nxt){
int v = e[i].v;
if(!pvis[v]){
dfs1(v);
}
}
}
void dfs2(int u){
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].v;
if(!evis[i]){
evis[i]=evis[i^]=true;//判断边有没有走过
dfs2(v);
int tmp=i%?-(i+)/:i/+; //对应边的编号
if(i<*m) ans[cnt].push_back(tmp); //为原先存在的边
else cnt++; //新连的虚边
}
}
}
int main(){
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
while(~scanf("%d%d",&n,&m)){
init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
du[u]++,du[v]++;
}
for(int i=;i<=n;i++){
if(!pvis[i]&&du[i]){
odd.clear();
dfs1(i);
for(int i=;i<odd.size();i+=){//保留两个奇度点,其余两两连边
addedge(odd[i],odd[i+]);
}
int rt = odd.size()?odd[]:i;
dfs2(rt);
cnt++;
}
}
printf("%d\n",cnt);
for(int i=;i<cnt;i++){
printf("%d",ans[i].size());
for(int j=ans[i].size()-;j>=;j--){
printf(" %d",ans[i][j]);
}puts("");
}
} return ;
}
HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)的更多相关文章
- HDU 6311 Cover (无向图最小路径覆盖)
HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)
The Wall has down and the King in the north has to send his soldiers to sentinel. The North can be r ...
- HDU - 6311 Cover (欧拉路径)
题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1} 条路径.将奇度数的点两两相连边(虚边),然后先 ...
- HDU 6311 最少路径覆盖边集 欧拉路径
Cover Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- poj 1422 Air Raid 最少路径覆盖
题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...
- hdu 5386 Cover (暴力)
hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...
- HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)
题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id. 也就是可以多少次一笔画的方式画完这个无向图. 题解:我们已知最优胜的情况是整个图是欧拉图 ...
- hdu 1151 Air Raid(二分图最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS Memory Limit: 10000K To ...
- HDU 1054 Strategic Game(最小路径覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...
随机推荐
- [APIO2012]守卫
近日状态并不是很好, 很不稳, 思路也不是很清晰 希望自己能走出来 题意:有序列1~n 现给出两种区间 区间0:序号在[x, y]的节点不能有忍者 区间1:序号在[x, y]的节点区间里至少有一个忍者 ...
- WC2019 tree
WC2019唯一一道正常的题,考场上没什么想法,也只拿到了暴力分.搞了一天终于做完了. 前置知识:purfer序,多项式exp或分治FTT. 对于\(type=0\)的,随便维护下,算下联通块即可. ...
- 【BZOJ5471】[FJOI2018]邮递员问题(动态规划)
[BZOJ5471][FJOI2018]邮递员问题(动态规划) 题面 BZOJ 洛谷 给定平面上若干个点,保证这些点在两条平行线上,给定起点终点,求从起点出发,遍历所有点后到达终点的最短路径长度. 题 ...
- [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...
- [luogu1341]无序字母对【欧拉回路】
题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 分析 欧拉回路的模板题. 暴力删边欧拉 ...
- SAM练习记录
SAM练习记录 洛谷 P1368 工艺 其实是最小表示法裸题 倍长后建SAM跑最小的边走|S|步即可 Code CF 235 C. Cyclical Quest 对主串建SAM 然后每个串倍长,跑的时 ...
- [JSOI2008]魔兽地图(树形dp)
DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allst ...
- Gym-100451B:Double Towers of Hanoi
题目链接 题目大意:把汉诺双塔按指定顺序排好的最少步数 我写这题写了很久...终于发现不dp不行 把一个双重塔从一根桩柱移动到另一根桩柱需要移动多少次? 最佳策略是移动一个双重 (n-1) 塔,接着移 ...
- HTML 5 canvas globalCompositeOperation 属性
做一个canvas鼠标跟随动画的时候用到了,就copy w3c的解释整理一番: globalCompositeOperation 属性设置或返回如何将一个源(新的)图像绘制到目标(已有)的图像上. 源 ...
- C++ const 理解
转载自:https://www.cnblogs.com/jiabei521/p/3335676.html 如果函数需要传入一个指针,面试官可能会问是否需要为该指针加上const,把const加在指针不 ...