Lingo求解线性规划案例2——多阶段投资问题
凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/
某公司现有资金30万元可用于投资,5年内有下列方案可供采纳:
1号方案:在年初投资1元,2年后可收回1.3元;
2号方案;在年初投资1元,3年后可收回1.45元;
3号方案:仅在第1年年初有一次投资机会。每投资1元,4年后可收回1.65元;
4号方案:仅在第2年年初有一次投资机会。每投资1元,4年后可收回1.7元;
5号方案。在年初存入银行1元,下一年初可得1.1元。
每年年初投资所得收益及银行利息也可用作安排。
问该公司在5年内怎样使用资金,才能在第6年年初拥有最多资金?
解:设xij为i号方案在第j年年初所使用的资金数。
显然,对于3号及4号方案,仅有x31和x42。此外,不考虑x15,x24,x25,因为其相应投资方案回收期超过我们所讨论的期限。
我们将各年的决策变量(表中虚线起点)及其相应效益(表中虚线终点)列表。

显然,第j年年初可使用的资金之和应等于第j年年初所引用的决策变量之和。于是,根据表所示的各种因果关系,我们不难建立如下模型:
maxf=1.7x42+1.45x23+1.3x14+1.1x55
s.t. x11+x21+x31+x51=300000
x12+x22+x42+x52=1.1x51
x13+x23+x53=1.3x11+1.1x52
x14+x54=1.45x21+1.3x12+1.1x53
x55=1.65x31+1.45x22+1.3x13+1.1x54
x1j≥O, j=1,2,3,4
x2j≥O, j=1,2,3;
x31≥0, x42≥0, x5i≥0,i=1,…,5
Lingo程序:
max=1.7*x42+1.45*x23+1.3*x14+1.1*x55;
x11+x21+x31+x51=300000;
x12+x22+x42+x52=1.1*x51;
x13+x23+x53=1.1*x52+1.3*x11;
x14+x54=1.1*x53+1.3*x12+1.45*x21;
x55=1.1*x54+1.3*x13+1.45*x22+1.65*x31;
end
结果为:
Global optimal solution found.
Objective value: 565500.0
Infeasibilities: 0.000000
Total solver iterations: 0 Variable Value Reduced Cost
X42 0.000000 0.1363636E-01
X23 0.000000 0.000000
X14 435000.0 0.000000
X55 0.000000 0.000000
X11 0.000000 0.000000
X21 300000.0 0.000000
X31 0.000000 0.7000000E-01
X51 0.000000 0.000000
X12 0.000000 0.2363636E-01
X22 0.000000 0.1186364
X52 0.000000 0.1186364
X13 0.000000 0.2000000E-01
X53 0.000000 0.2000000E-01
X54 0.000000 0.9000000E-01 Row Slack or Surplus Dual Price
1 565500.0 1.000000
2 0.000000 1.885000
3 0.000000 1.713636
4 0.000000 1.450000
5 0.000000 1.300000
6 0.000000 1.100000
Lingo求解线性规划案例2——多阶段投资问题的更多相关文章
- Lingo求解线性规划案例4——下料问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 造纸厂接到定单,所需卷纸的宽度和长度如表 卷纸的宽度 长度 5 7 9 10000 30000 20000 工 ...
- Lingo求解线性规划案例1——生产计划问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 说明: Lingo版本: 某工厂明年根据合同,每个季度末 ...
- Lingo求解线性规划案例3——混料问题
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某糖果厂用原料A.B和C按不向比率混合加工而成甲.乙.丙三种糖果(假设混合加工中不损耗原料).原料A.B.C ...
- 用Lingo求解线性规划问题
第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...
- 图论中最优树问题的LINGO求解
树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...
- matlab学习笔记之求解线性规划问题和二次型问题
一.线性规划问题 已知目标函数和约束条件均为线性函数,求目标函数的最小值(最优值)问题. 1.求解方式:用linprog函数求解 2.linprog函数使用形式: x=linprog(f,A,b) ...
- matlab 求解线性规划问题
线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...
- Python求解线性规划——PuLP使用教程
简洁是智慧的灵魂,冗长是肤浅的藻饰.--莎士比亚<哈姆雷特> 1 PuLP 库的安装 如果您使用的是 Anaconda[1] 的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境 ...
- 单纯形求解线性规划(BZOJ1061)
推荐一篇论文:http://wenku.baidu.com/view/ce5784754a7302768f99391d 我们设xi为第i个志愿者的招募次数,以样例为例,则不难列出如下的线性规划方程: ...
随机推荐
- #if 与 #ifdef 之间的区别
先来看个例子: #define TARGET_LITTLE_ENDINA 1 #define TARGET_BIG_ENDINA 0 #ifdef TARGET_LITTLE_ENDINA call ...
- 【golang-GUI开发】qt之signal和slot(一)
想了很久,我决定还是先从signal和slot(信号槽)开始讲起. signal和slot大家一定不陌生,先看一段示例(选自文档): class Counter : public QObject { ...
- 重装系统之 Win10 镜像安装
首先配置武器的第一步是要选择武器的性质,以前win10 刚出的时候有很多问题,导致大家都不太喜欢用,但是现在Win10 经过一系列的优化,已经相当稳定靠谱,但是网上很多重装系统的教程参差不齐,导致博主 ...
- [android] 隐式意图激活另外一个activity
随着api的升级,系统的很多应用包名和类名都改掉了,所以很多时候,打开系统应用的时候会报错,隐式意图就是解决组件之间松耦合,描述动作行为 获取Intent对象,通过new出来 调用Intent对象的s ...
- npm ERR! Cannot read property 'path' of null
npm错误: 错误信息如下: $ sudo npm install -g bean-sdk sudo: npm: command not found $ npm install -g bean-sdk ...
- Redis 持久化之RDB和AOF
Redis 持久化之RDB和AOF Redis 有两种持久化方案,RDB (Redis DataBase)和 AOF (Append Only File).如果你想快速了解和使用RDB和AOF,可以直 ...
- cloudera manager 安装配置
前面cloudera manager 环境准备和安装我参考的是: https://blog.csdn.net/m0_38017084/article/details/82218559 这篇博客,写的非 ...
- python名片管理
python名片管理是我根据视频自己敲敲的代码,后续学习会持续更新 代码 card_main.py import card_tools # 无限循环,由用户决定什么时候退出 while True: # ...
- Grafan+Prometheus 监控 MySQL
架构图 环境 IP 环境 需装软件 192.168.0.237 mysql-5.7.20 node_exporter-0.15.2.linux-amd64.tar.gz mysqld_exporter ...
- bootstrap源码之滚动监听组件scrollspy.js详解
其实滚动监听使用的情况还是很多的,比如导航居于右侧,当主题内容滚动某一块的时候,右侧导航对应的要高亮. 实现功能 1.当滚动区域内设置的hashkey距离顶点到有效位置时,就关联设置其导航上的指定项 ...