poj1789 Truck History
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 20768 | Accepted: 8045 |
Description
Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as
1/Σ(to,td)d(to,td)
where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types.
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.
Input
Output
Sample Input
4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0
Sample Output
The highest possible quality is 1/3. 代码
基本prim模板没什么可说的,只是需要将字符串预处理为邻接矩阵即可
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
int map[2005][2005];
char str[2005][7];
int vis[2005],dis[2005];
int n;
int prim(int u){
int sum=0;
for(int i=1;i<=n;i++){
dis[i]=map[u][i];
}
vis[u]=1;
for(int i=1;i<n;i++){
int tmin=999999999;
int ans;
for(int j=1;j<=n;j++){
if(dis[j]<tmin&&!vis[j]){
tmin=dis[j];
ans=j;
}
}
sum+=tmin;
vis[ans]=1;
for(int k=1;k<=n;k++){
if(dis[k]>map[ans][k]&&!vis[k])
dis[k]=map[ans][k];
}
}
return sum;
}
int main(){
while(scanf("%d",&n)!=EOF){
if(n==0)
break;
memset(map,0,sizeof(map));
memset(str,0,sizeof(str));
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
getchar();
for(int i=1;i<=n;i++){
scanf("%s",str[i]);
getchar();
}
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
int sum=0;
for(int k=0;k<7;k++){
if(str[i][k]!=str[j][k])
sum++;
}
map[i][j]=sum;
map[j][i]=sum;
}
}
printf("The highest possible quality is 1/%d.\n",prim(1));
}
return 0;
}
poj1789 Truck History的更多相关文章
- POJ1789 Truck History 【最小生成树Prim】
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18981 Accepted: 7321 De ...
- POJ1789 Truck History 2017-04-13 12:02 33人阅读 评论(0) 收藏
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27335 Accepted: 10634 D ...
- poj1789 Truck History最小生成树
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 20768 Accepted: 8045 De ...
- POJ1789:Truck History(Prim算法)
http://poj.org/problem?id=1789 Description Advanced Cargo Movement, Ltd. uses trucks of different ty ...
- POJ1789 Truck History(prim)
题目链接. 分析: 最大的敌人果然不是别人,就是她(英语). 每种代表车型的串,他们的distance就是串中不同字符的个数,要求算出所有串的distance's 最小 sum. AC代码如下: #i ...
- Truck History(prim & mst)
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19772 Accepted: 7633 De ...
- poj 1789 Truck History 最小生成树
点击打开链接 Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15235 Accepted: ...
- poj 1789 Truck History
题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...
- POJ 1789 Truck History (最小生成树)
Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...
随机推荐
- 第十章:Javascript子集和扩展
本章讨论javascript的集和超集,其中子集的定义大部分处于安全考虑.只有使用这门语言的一个安全的子集编写脚本,才能让代码执行的更安全.更稳定.ECMScript3标准是1999年版本的,10年后 ...
- javascript函数自调用
1. 函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块. 2. 将函数用 “()”括起来, 后面再加一个“()” 3. javascript函数的内置对象arguments对象, 它包 ...
- sql-in和not in
IN .NOT IN这个指令可以让我们依照一或数个不连续 (discrete) 的值的限制之内抓出数据库中的值 in和not in in:存在与...里面的 not in:不存在与..里面的 其指令语 ...
- 11.Android之常用对话框AlertDialog学习
(1)首先我们写个简单的AlertDialog对话框,要创建一个AlertDialog,就要用到AlertDialog.Builder中的create()方法,然后创建对话框可以设置对话框的属性,比如 ...
- POJ 1273 Drainage Ditches -dinic
dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...
- TYVJ1000 A+B problem [存个高精模板]
A+B Problem! 通过模拟我故乡非洲的计算方式,我们很快可以解决这道题. #include<iostream> #include<cstdio> #include< ...
- 循序渐进Linux 3:Linux下软件安装与管理
一.源码安装 ./configuremakemake install 二.RPM包 1. 安装软件包 rpm -i [辅助选项] file1.rpm file2.rpm主选项 -i: install, ...
- iOS应用支持IPV6
一.IPV6-Only支持是啥? 首先IPV6,是对IPV4地址空间的扩充.目前当我们用iOS设备连接上Wifi.4G.3G等网络时,设备被分配的地址均是IPV4地址,但是随着运营商和企业逐渐部署IP ...
- 《驾驭Core Data》 第三章 数据建模
本文由海水的味道编译整理,请勿转载,请勿用于商业用途. 当前版本号:0.1.2 第三章数据建模 Core Data栈配置好之后,接下来的工作就是设计对象图,在Core Data框架中,对象图被表 ...
- ECSHOP管理员密码忘记了怎么办?
ECSHOP管理员密码忘记了怎么办? ECSHOP教程/ ecshop教程网(www.ecshop119.com) 2013-09-06 不小心在后台把管理员全部给清空了,闹的网站都无法登陆了?有 ...