前面两节内容已经说完了所有的三种变换。也就是说我们现在程序里面既不需要glLookAt(),也不需要gluPerspective(),这些矩阵我们都可以自己写。然后,再用glMultMatrix()来调用这些矩阵,注意一点就是OpenGL是左乘,前面给出的矩阵都是右乘矩阵,所以调用的时候需要转置,摆放的位置也要注意。当然,如果用shader的话,这些函数也就用不到了,矩阵顺序也可以自己定义。这里所有的变换都是作用在顶点(Vertex)上的,但是还有一类数据需要进行变换,那就是顶点法线。我们在计算光照的时候,需要在顶点上设置顶点发现,顶点经过各种变换,法线肯定也要跟着变。不过法线的变化跟顶点有些许的不同,本文就介绍下法线变换。

  首先,我们需要知道法线的几个注意的地方:

  1. 法线向量是需要进行归一化的,它的长度必须为1.0。
  2. 法线向量是表示方向的,跟顶点不一样不是表示位置,所以法线向量只有三个分量,不存在齐次坐标。
  3. 法线向量的变换中,一般只有旋转变换和部分缩放变换。因为法线向量表示方向,平移后不变化,而且法线如果等轴缩放,归一化后也不变化,另外,法线主要是计算光照,透视变换也用不到。

  跟直觉违背的是,法线向量的变换与顶点向量的变换方式是不同的。那么如何变换法线呢?我们首先取出变换矩阵的左上角的3*3矩阵。因为法线向量只需要包含必要的旋转和缩放信息,也可以将物体从模型坐标系变换到眼(相机)坐标系。公式如下:

图1

  我们现在现在看看为何需要求逆后转置。如图2所示,我们如果直接将法线向量乘以M,就会出现中间的这种情况,其法线分布明显与表面不垂直,而最右边的图才是正确变换后的法向分布。

图2

  我们接下来证明一下公式。这里假设某一点处的法向量为n,切向量为t,由两者在曲面上的垂直关系可知:

图3

  假设顶点开始变换,最终的变换矩阵为M,那么变换后的切向量为t'=Mt。切向量可以通过几何分析来验证变换矩阵和顶点是一致的,这里就不详述了。那么我们可以得到变换后的n't'之间的关系:

图4

  我们根据上式可以得到中间两项GTM=I,所以我们得到最终的发现变换矩阵:

图5

  这里就介绍完所有的变换矩阵了,真是一个漫长的过程。其实在这些变换后还有一个视口变换,就是将光栅化后的图像映射到窗口中,但由于这一步时管线内部的操作,这次也就没提了。大家可以试着自己写一下各种矩阵,肯定对OpenGL视图和变换这块更加理解。

详解OpenGL中的各种变换(投影变换,模型变换,视图变换)(完)——法线变换的更多相关文章

  1. jQuery:详解jQuery中的事件(二)

    上一篇讲到jQuery中的事件,深入学习了加载DOM和事件绑定的相关知识,这篇主要深入讨论jQuery事件中的合成事件.事件冒泡和事件移除等内容. 接上篇jQuery:详解jQuery中的事件(一) ...

  2. 图文详解Unity3D中Material的Tiling和Offset是怎么回事

    图文详解Unity3D中Material的Tiling和Offset是怎么回事 Tiling和Offset概述 Tiling表示UV坐标的缩放倍数,Offset表示UV坐标的起始位置. 这样说当然是隔 ...

  3. 【转】详解C#中的反射

    原帖链接点这里:详解C#中的反射   反射(Reflection) 2008年01月02日 星期三 11:21 两个现实中的例子: 1.B超:大家体检的时候大概都做过B超吧,B超可以透过肚皮探测到你内 ...

  4. 详解Webwork中Action 调用的方法

    详解Webwork中Action 调用的方法 从三方面介绍webwork action调用相关知识: 1.Webwork 获取和包装 web 参数 2.这部分框架类关系 3.DefaultAction ...

  5. 【转】详解JavaScript中的this

    ref:http://blog.jobbole.com/39305/ 来源:foocoder 详解JavaScript中的this JavaScript中的this总是让人迷惑,应该是js众所周知的坑 ...

  6. 深入详解SQL中的Null

    深入详解SQL中的Null NULL 在计算机和编程世界中表示的是未知,不确定.虽然中文翻译为 “空”, 但此空(null)非彼空(empty). Null表示的是一种未知状态,未来状态,比如小明兜里 ...

  7. java 乱码详解_jsp中pageEncoding、charset=UTF -8"、request.setCharacterEncoding("UTF-8")

    http://blog.csdn.net/qinysong/article/details/1179480 java 乱码详解__jsp中pageEncoding.charset=UTF -8&quo ...

  8. 详解Objective-C中委托和协议

    Objective-C委托和协议本没有任何关系,协议如前所述,就是起到C++中纯虚类的作用,对于“委托”则和协议没有关系,只是我们经常利用协议还实现委托的机制,其实不用协议也完全可以实现委托. AD: ...

  9. 举例详解Python中的split()函数的使用方法

    这篇文章主要介绍了举例详解Python中的split()函数的使用方法,split()函数的使用是Python学习当中的基础知识,通常用于将字符串切片并转换为列表,需要的朋友可以参考下   函数:sp ...

随机推荐

  1. 3. PHP

    安装: apt-get install php5-fpm php5-mysql   配置: vi /etc/php5/fpm/php.ini cgi.fix_pathinfo=0   vi /etc/ ...

  2. 【iHMI43 4.3寸液晶模块】demo竖屏例程(版本1.01)发布

    ============================== 技术论坛:http://www.eeschool.org 博客地址:http://xiaomagee.cnblogs.com 官方网店:h ...

  3. UVa 11624 Fire!(BFS)

    Fire! Time Limit: 5000MS   Memory Limit: 262144KB   64bit IO Format: %lld & %llu Description Joe ...

  4. CSS2系列:BFC(块级格式化上下文)IFC(行级格式化上下文)

    BFC 块级格式化上下文,不好理解,我们暂且把她理解成"具有特殊的一类元素" 哪些元素会生成BFC? 根元素 float属性不为none position为absolute或fix ...

  5. Gitolite配置管理和GIT基本操作

    简述公司版gitolite的项目配置与管理 1. 基于秘钥对的管理 1.1 客户端(需要访问代码库的机器)生成秘钥对,采用RSA加密ssh-keygen -t rsa -f path_to_store ...

  6. Ruby--Array

    --后面连接其它数组:[ARRAY].concat([OTHER ARRAY]) --排序:sort,进阶:sort_by{|obj| obj.[VALUE]} --随机获取:[ARRAY].samp ...

  7. Apache Kafka源码分析 - KafkaApis

    kafka apis反映出kafka broker server可以提供哪些服务,broker server主要和producer,consumer,controller有交互,搞清这些api就清楚了 ...

  8. JStack分析cpu消耗过高问题

    Mark一下, 今天确实用这个方法找到了问题 http://www.iteye.com/topic/1114219 1. top找到目标进程,记下pid 2. top –p pid, 并用shift+ ...

  9. Android 的上下文菜单: Context Menu,registerForContextMenu(getListView())

    概述: Android 的上下文菜单类似于 PC 上的右键菜单.当为一个视图注册了上下文菜单之后,长按(2 秒左右)这个视图对象就会弹出一个浮动菜单,即上下文菜单.任何视图都可以注册上下文菜单,不过, ...

  10. 在windows下创建一个Mongo服务

    首先需要下载mongo的安装包 cmd.exe 这个需要用管理员权限打开 进入到mongo的安装目录 首先到C盘根据下面的命令手动创建一个 Data 文件夹 在Data 里面创建一个db文件夹一个lo ...