RMQ ( 范围最小值查询 ) 问题是一种动态查询问题,它不需要修改元素,但要及时回答出数组 A 在区间 [l, r] 中最小的元素值。

RMQ(Range Minimum/Maximum Query):对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。

对于 RMQ ,我们通常关心两方面的算法效率:预处理时间和查询时间。
解决一般 RMQ 问题的三种方法
胜者树 (Winner Tree) O(n)-O(logn)
稀疏表 (Sparse Table) O(nlogn)-O(1)
线段树 (Segment Tree) O(n)-O(logn)
这里介绍一个稀疏表算法。

一、稀疏表ST算法--预处理

二、稀疏表ST算法--查询

三、RMQ ST模板

package ads;

public class RMQ_ST {

    int[] a;
int[][] st;//st[i][j],i表示数组a的索引为i的元素,即i:索引
int n;
public RMQ_ST(int[] a) {
this.a = a;
this.n = a.length;
st = new int[n][17];
} void initRMQ() {
int k = (int)(Math.log((double)n) / Math.log(2.0));
for (int i=0; i<n; i++) st[i][0] = i;
for (int j=1; j<=k; j++) { //dp开始,从1到k
for (int i=0; i<n; i++) { //遍历每个元素
st[i][j] = st[i][j-1]; //先赋值为前一半的RMQ值
int part = i + (1 << (j-1));//后一半的第一个元素索引
if (part >= n) break; //如果后一半的第一个元素已经超出数组范围,直接跳过后面的元素
if (a[ st[i][j-1] ] > a[ st[part][j-1] ]) st[i][j] = st[part][j-1];
}
}
} int rmq(int x, int y) {
int k = (int)(Math.log((double)y-x+1) / Math.log(2.0));
int part = y - (1<<k) + 1;//切分,比如0~4切分成st(0,2)和st(1,2),前者是0~3的最小元素,后者是1~4的
if (a[ st[x][k] ] < a[ st[part][k] ]) return st[x][k];
return st[part][k];
} public static void main(String[] args) {
int[] numbers = {4,3,2,1,6,7,8,9};
RMQ_ST st = new RMQ_ST(numbers);
st.initRMQ();
System.out.println(st.rmq(0, 3));
System.out.println(st.rmq(4, 7));
} }

四、示例代码

poj2425 http://poj.org/problem?id=2452

思路:枚举每个位置 i ,找出右边第一个比 a[i] 小的元素位置j

  在 i 到 j-1 中间求最大值的位置 k ,如果 a[k] > a[i],那么更新答案

Description

Xuanxuan has n sticks of different length. One day, she puts all her sticks in a line, represented by S1, S2, S3, ...Sn. After measuring the length of each stick Sk (1 <= k <= n), she finds that for some sticks Si and Sj (1<= i < j <= n), each stick placed between Si and Sj is longer than Si but shorter than Sj.

Now given the length of S1, S2, S3, …Sn, you are required to find the maximum value j - i.

Input

The input contains multiple test cases. Each case contains two lines. 
Line 1: a single integer n (n <= 50000), indicating the number of sticks. 
Line 2: n different positive integers (not larger than 100000), indicating the length of each stick in order.

Output

Output the maximum value j - i in a single line. If there is no such i and j, just output -1.

Sample Input

4
5 4 3 6
4
6 5 4 3

Sample Output

1
-1

Source

 
#include <iostream>
#include <cstdio>
#include <cmath> using namespace std; const int MAXN = ; int n;
int a[MAXN];
int st1[MAXN][], st2[MAXN][];//分别是最小RMQ和最大RMQ
int d[]; void rmqinit() {
for (int i=; i<=n; i++) st1[i][] = st2[i][] = i;
int k = int(log(double(n)) / log(2.0)) + ;
for (int j=; j<k; j++) {
for (int i=; i<n; i++) {
st1[i][j] = st1[i][j-];
st2[i][j] = st2[i][j-];
int part = i + ( << (j-));
if (part >= n) break;
if (a[ st1[i][j-] ] > a[ st1[part][j-] ]) st1[i][j] = st1[part][j-];
if (a[ st2[i][j-] ] < a[ st2[part][j-] ]) st2[i][j] = st2[part][j-];
}
}
} int rmqmin(int l, int r) {
int k = int( log(double(r-l+)) / log(2.0) );
int part = r - (<<k) + ;
if (a[ st1[l][k] ] < a[ st1[part][k] ]) return st1[l][k];
return st1[part][k];
} int rmqmax(int l, int r) {
int k = int( log(double(r-l+)) / log(2.0) );
int part = r - (<<k) + ;
if (a[ st2[l][k] ] > a[ st2[part][k] ]) return st2[l][k];
return st2[part][k];
} int bin_search(int a) {
int l = a, r = n - ;
while (l < r) {
int mid = ((l+r)>>) + ((l+r)&);
if (a == rmqmin(a, mid)) { //如果l~mid范围内的最小元素是l,说明l~mid都大于元素l
l = mid;
}
else {
r = mid - ;
}
}
return l;
} int work() {
int res = -;
for (int i=; i<n; i++) {
int r = rmqmax(i, bin_search(i));
res = max(res, r-i);
}
if (res == ) return -;
return res;
} int main()
{
while (scanf("%d", &n) != EOF) {
for (int i=; i<n; i++) {
scanf("%d", a+i);
} rmqinit();
printf("%d\n", work());
} //cout << "Hello world!" << endl;
return ;
}

RMQ (Range Minimal Query) 问题 ,稀疏表 ST的更多相关文章

  1. 算法学习 - ST表 - 稀疏表 - 解决RMQ问题

    2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...

  2. 基于稀疏表(Sparse Table)的RMQ(区间最值问题)

    在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...

  3. 动态规划——稀疏表求解RMQ问题

    RMQ (Range Minimum/Maximum Query)问题,即区间最值查询问题,是求解序列中的某一段的最值的问题.如果只需要询问一次,那遍历枚举(复杂度O(n))就是最方便且高效的方法,但 ...

  4. ST (Sparse Table:稀疏表)算法

    1541:[例 1]数列区间最大值 时间限制: 1000 ms         内存限制: 524288 KB提交数: 600     通过数: 207 [题目描述] 输入一串数字,给你 MM 个询问 ...

  5. AOJ DSL_2_A Range Minimum Query (RMQ)

    Range Minimum Query (RMQ) Write a program which manipulates a sequence A = {a0,a1,...,an−1} with the ...

  6. Range Minimum Query and Lowest Common Ancestor

    作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...

  7. AOJ DSL_2_E Range Add Query (RAQ)

    Range Add Query 数列 A = {a1,a2,...,an} に対し.次の2つの操作を行うプログラムを作成せよ. add(s,t,x): as,as+1,...,at にxを加算する. ...

  8. AOJ DSL_2_D Range Update Query (RUQ)

    Range Update Query 数列 A = {a0,a1 ,...,an−1} に対し.次の2つの操作を行うプログラムを作成せよ. update(s,t,x): as,as+1,...,at  ...

  9. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

随机推荐

  1. Apache Kafka源码分析 - PartitionStateMachine

    startup 在onControllerFailover中被调用, initializePartitionState private def initializePartitionState() { ...

  2. 关于jQuery学习

    ≡[..]≡≡[..]≡ 所有的实例都位于document.ready里面--为了防止文档在未完全加载之前就运行函数导致操作失败. $(document).ready(function(){ --- ...

  3. delphi 最全日期格式_DateUtils时间单元说明

    DateUtils时间单元说明 CompareDate 函数 比较两个日期时间值日期部分的大小 CompareDateTime 函数 比较两个日期时间值的大小 CompareTime 函数 比较两个日 ...

  4. 六 mybatis高级映射(一对一,一对多,多对多)

    1  订单商品数据模型 以订单商品数据为模型,来对mybaits高级关系映射进行学习.

  5. Java Map遍历方式的选择

    [原文] 1. 阐述 对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多.理由是:entrySet方法一次拿到所有key和value的集合:而keyS ...

  6. 【git】删除某个文件的所有历史记录,批量删除远程分支

    删除git某个文件的所有历史记录 git的目的就是版本控制,记录每一个版本的变动.然而有的时候我们往往希望从版本库中彻底删除某个文件,不再显示在历史记录中.例如不小心上传了一堆错误的文件,或者不小心上 ...

  7. java开发bug 在启动Tomcat 6.0时发现第一条信息便是

    MyEclipse 8.5 + tomcat6 + jdk 1.8 启动的时候报错: The APR based Apache Tomcat Native library which allows o ...

  8. Bluetooth L2CAP介绍

    目录 1. 通用操作 1. L2CAP Channel 2. 设备间操作 3. 层间操作 4. 操作模式 2. 数据包格式(Data Packet Format) 1. B-Frame 2. G-Fr ...

  9. php比较加赋值语句

    $a=-2;if ($a < 0 && $a = 1) { echo $a;} 输出1 右面的$a=1可不是条件哦,而是赋值

  10. Qt 自定义 滚动条 样式(模仿QQ)

    今天是时候把软件中的进度条给美化美化了,最初的想法就是仿照QQ. 先前的进度条是这样,默认的总是很难受欢迎的:美化之后的是这样,怎么样?稍微好看一点点了吧,最后告诉你实现这个简单的效果在Qt只需要加几 ...