题目链接http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662

题目大意:树枝上间连接着一坨坨苹果(不要在意'坨'),给定留下m根树枝,问最后剩下的最多苹果是多少。

解题思路

其实意思和Vijos 1180(选课)的意思差不多。只不过权在边而已。

首先建无向图dfs。

for(f+1...j....cost)

for(1....k...j-cost)

其中f为当前已经dfs子结点个数。之所以+1,是因为当前点也需要分配一根树枝才能取到这个点的苹果。

f+=dfs(t),dfs(t)返回的是子点t的f+1。

其实可以直接把f+1写成m+1, 不过要多好多次没必要的循环。

最后结果就是dp[1][m+1],注意由于树结构,1上的苹果是默认都能取到,但是按照这种DP方式要取到1上苹果,还需要加一个虚枝才行,也就是为什么是m+1。

#include "cstdio"
#include "queue"
#include "iostream"
#include "cstring"
using namespace std;
#define maxn 105
int n,m,dp[maxn][maxn],head[maxn],tol;
struct Edge
{
int next,to,w;
}e[maxn*];
void addedge(int u,int v,int w)
{
e[tol].to=v;
e[tol].next=head[u];
e[tol].w=w;
head[u]=tol++;
}
int dfs(int root,int pre)
{
int cost=,i=root,f=;
for(int a=head[root];a!=-;a=e[a].next)
{
int t=e[a].to;
if(t==pre) continue;
f+=dfs(t,root);
for(int j=f+;j>=;j--)
for(int k=;k<=j-cost;k++)
dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[t][k]+e[a].w);
}
return f+cost;
}
int main()
{
//freopen("in.txt","r",stdin);
int u,v,w;
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(,);
printf("%d\n",dp[][m+]);
}
2867777 neopenx URAL 1018 Accepted 418 31 G++ 4.9 917
2014-10-20 16:15:45

Ural 1018 (树形DP+背包+优化)的更多相关文章

  1. ural 1018(树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 思路:典型的树形dp,处理的时候类似于分组背包,dp[i] ...

  2. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  3. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

  4. 树形dp空间优化(dfn)

    树形dp空间优化 介绍 有时题目会告诉我们n叉树的最大层数,或者给出一个完全n叉树树,直接做树形dp会爆空间时,就可以用这个优化方法. 多数树形dp都是先dfs到子树,再合并到根上,显然当合并到根上时 ...

  5. BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)

    题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前 ...

  6. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  7. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

  8. P3994 高速公路 树形DP+斜率优化+二分

    $ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...

  9. joyOI 选课 【树形dp + 背包dp】

    题目链接 选课 题解 基础背包树形dp #include<iostream> #include<cstdio> #include<cmath> #include&l ...

随机推荐

  1. nginx reload

    iwangzheng.com Usage: nginx [-?hvVt] [-s signal] [-c filename] [-p prefix] [-g directives] Options:- ...

  2. Android音频播放实例

    MediaPlayer: 此类适合播放较大文件,此类文件应该存储在SD卡上,而不是在资源文件里,还有此类每次只能播放一个音频文件. 1.从资源文件中播放 MediaPlayer player = ne ...

  3. django-cms 代码研究(二)bugs?

    djangocms集成到现有项目中后,发现了几个问题: 1. 现有项目的url匹配失效,下面requests请求被交给djangocms处理了 url(r'^admin/', include(admi ...

  4. Java--多线程读取网络图片并保存在本地

    本例用到了多线程.时间函数.网络流.文件读写.正则表达式(在读取html内容response时,最好不要用正则表达式来抓捕html文本内容里的特征,因为服务器返回的多个页面的文本内容不一定使用相同的模 ...

  5. Redis和Memcache的区别分析

    1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别. 2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构 ...

  6. win10远程桌面连接

    有的情况下,Win10设置了允许远程桌面连接后,远程主机仍然不能桌面连接到目标主机上,这时可以在目标主机上尝试如下修改: 开始-->运行->gpedit.msc->计算机配置-> ...

  7. Linux系统排查1——内存篇

    常见工作中,计算机系统的资源主要包括CPU,内存,硬盘以及网络,过度使用这些资源将使系统陷入困境.本系列一共四篇博文,结合我在实习期间的学习,介绍一些常见的Linux系统排障工具及方法. 第1篇——内 ...

  8. DP:Cheapest Palindrome(POJ 3280)

    价值最小回文字符串 题目大意:给你一个字符串,可以删除可以添加,并且每一次对一个字母的操作都带一个权,问你转成回文串最优操作数. 如果这一题我这样告诉你,你毫无疑问知道这一题是LD(Levenshti ...

  9. codeforces B. Valera and Contest 解题报告

    题目链接:http://codeforces.com/problemset/problem/369/B 题目意思:给出6个整数, n, k, l, r, sall, sk ,需要找出一个满足下列条件的 ...

  10. windows 常用快捷键

    快捷键,学会就可以扔掉鼠标.      F1帮助              F2改名              F3搜索              F4地址              F5刷新     ...