求DAG上两点的最短距离
Problem
给出一个不带边权(即边权为1)的有向无环图(unweighted DAG)以及DAG上两点s, t,求s到t的最短距离,如果无法从s走到t,则输出-1。
Solution
DFS,BFS都可,对于unweighted DAG, BFS更合适,下面给出DFS解法。
const int N(1e5+);
vector<int> g[N];
int d[N], vis[N]; void dfs(int u, int t){
vis[u]=; if(u==t){d[u]=; return;}
for(int i=; i<g[u].size(); i++){
int &v=g[u][i]; if(!vis[v]) dfs(v, t);
if(~d[v]) d[u]=~d[u]?min(d[v]+, d[u]):d[v]+;
}
} int solve(int s, int t){
memset(d, -, sizeof(d));
memset(vis, , sizeof(vis));
dfs(s, t);
return d[s];
}
对于weighted DAG, 解法类似。
求DAG上两点的最短距离的更多相关文章
- DAG上的动态规划之嵌套矩形
题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...
- DAG上动态规划
很多动态规划问题都可以转化为DAG上的最长路,最短路,或路径计数问题. 硬币问题: 有N中硬币,面值分别为v1,v2,v3,……vn,每种都无穷多,给定非负整数S,可以选用多少个硬币,使他们的总和恰好 ...
- DAG上dp思想
DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- NYOJ16 矩形嵌套 【DAG上的DP/LIS】
矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c ...
- 嵌套矩形——DAG上的动态规划
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...
- DAG上的DP
引例:NYOJ16 矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可 ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- Codeforces Round #545 (Div. 2) E 强连通块 + dag上求最大路径 + 将状态看成点建图
https://codeforces.com/contest/1138/problem/E 题意 有n个城市(1e5),有m条单向边(1e5),每一周有d天(50),对于每个城市假如在某一天为1表示这 ...
随机推荐
- Nginx反向代理+负载均衡简单实现(https方式)
背景:A服务器(192.168.1.8)作为nginx代理服务器B服务器(192.168.1.150)作为后端真实服务器 现在需要访问https://testwww.huanqiu.com请求时从A服 ...
- AutoMapper使用
1.安装 现在AutoMapper已经更新到5.0版本了,可查看 http://www.nuget.org/packages/AutoMapper/ 我环境是4.0的,nuget安装 http://w ...
- Sublime Text 3 文本编辑器
1.安装下载 下载地址:http://www.cr173.com/soft/121149.html http://www.xiazaiba.com/html/24343.html 官网 http:// ...
- svn命令行修改已提交的版本备注
svn命令行修改已提交的版本备注 参考文章: stackoverflow.com/questions/304383/how-do-i-edit-a-log-message-that-i-already ...
- Caffe学习系列(19): 绘制loss和accuracy曲线
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.py ...
- android json解析及简单例子
JSON的定义: 一种轻量级的数据交换格式,具有良好的可读和便于快速编写的特性.业内主流技术为其提供了完整的解决方案(有点类似于正则表达式 ,获得了当今大部分语言的支持),从而可以在不同平台间进行数据 ...
- Vs2012 中使用itoa
自己在写程序的时候经常用到保存大量的图片,从而对其编号,所以要把整型转换成字符型. 通常自己定义string,而字符使用char[],把整形转换成char类型,然后和string类型相加,但是在VS2 ...
- ASP.NET MVC 5 入门教程 (1) 新建项目
文章来源: Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc-5-get-started-create-project.html 下一节:ASP.NET ...
- 从Lumia退役看为什么WP走向没落
前段时间决定将自己用了三年多的Lumia 800正式退役,这是我用的时间最长的手机,虽然系统上有缺陷,但是好不妨碍他成为我最有感情的一部手机.由于之前是WinPhone 开发者的关系,这部手机是微软送 ...
- Extension 代表的是私有成员变量
不明白就问百度.百度搜索得到的结果总是那么多却总是那么千篇一律.不晓得是什么原因. 刚完成一个项目.需要整理一下知识点. 在新项目开始的时候就比较矛盾.因为以前的项目中都有BaseViewContro ...