Problem

给出一个不带边权(即边权为1)的有向无环图(unweighted DAG)以及DAG上两点s, t,求s到t的最短距离,如果无法从s走到t,则输出-1。

Solution

DFS,BFS都可,对于unweighted DAG, BFS更合适,下面给出DFS解法。

const int N(1e5+);
vector<int> g[N];
int d[N], vis[N]; void dfs(int u, int t){
vis[u]=; if(u==t){d[u]=; return;}
for(int i=; i<g[u].size(); i++){
int &v=g[u][i]; if(!vis[v]) dfs(v, t);
if(~d[v]) d[u]=~d[u]?min(d[v]+, d[u]):d[v]+;
}
} int solve(int s, int t){
memset(d, -, sizeof(d));
memset(vis, , sizeof(vis));
dfs(s, t);
return d[s];
}

对于weighted DAG, 解法类似。

求DAG上两点的最短距离的更多相关文章

  1. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  2. DAG上动态规划

    很多动态规划问题都可以转化为DAG上的最长路,最短路,或路径计数问题. 硬币问题: 有N中硬币,面值分别为v1,v2,v3,……vn,每种都无穷多,给定非负整数S,可以选用多少个硬币,使他们的总和恰好 ...

  3. DAG上dp思想

    DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...

  4. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  5. NYOJ16 矩形嵌套 【DAG上的DP/LIS】

    矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c ...

  6. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

  7. DAG上的DP

    引例:NYOJ16 矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可 ...

  8. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

  9. Codeforces Round #545 (Div. 2) E 强连通块 + dag上求最大路径 + 将状态看成点建图

    https://codeforces.com/contest/1138/problem/E 题意 有n个城市(1e5),有m条单向边(1e5),每一周有d天(50),对于每个城市假如在某一天为1表示这 ...

随机推荐

  1. SpringMVC 初始化网站静态信息

    在网站开发中,一些元素经常被访问,例如 网页头部URL导航 的信息,以及Boot版权的信息,在各个页面都是重复出现的 如果每次渲染View都要通过Service层访问数据库 比较麻烦 也没有必要,但是 ...

  2. Sublime Text2 安装Package Control

    Sublime Text2是一款轻量级的妖娆的编辑器,想要更多私人定制功能的第一步就是安装Package  Control 这是官网的安装方法: Click the Preferences >  ...

  3. poj 3352

    Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11215 Accepted: 5575 De ...

  4. Android应用开发中如何使用隐藏API(转)

    一开始需要说明的是,Google之所以要将一些API隐藏(指加上@hide标记的public类.方法或常量)是有原因的.其中很大的原因就是Android系统本身还在不断的进化发展中.从1.0.1.1到 ...

  5. Android 判断现在系统存储器是“手机存储”还是“SD存储”

    import android.os.storage.StorageManager; String fileDir = null;            StorageManager storageMa ...

  6. SOAP和WSDL的一些必要知识(转)

    原文地址:SOAP和WSDL的一些必要知识 SOAP和WSDL对Web Service.WCF进行深入了解的基础,因此花一些时间去了解一下是很有必要的. 一.SOAP(Simple Object Ac ...

  7. 用 eric6 与 PyQt5 实现python的极速GUI编程(系列02)---- 省市县(区)下拉列表多级联动

    [概览] 本文实现如下的程序: 主要步骤如下: 1.在eric6中新建项目,新建窗体 2.(自动打开)进入PyQt5 Desinger,编辑图形界面,保存 3.回到eric 6,对上一步得到的界面文件 ...

  8. matlab中fopen 和 fprintf函数总结

    matlab中fopen函数在指定文件打开的实例如下: *1)"fopen"打开文件,赋予文件代号. 语法1:FID= FOPEN(filename,permission) 用指定 ...

  9. Java运算符优先级

    序列号 符号 名称 结合性(与操作数) 目数 说明 1 . 点 从左到右 双目 ( ) 圆括号 从左到右   [ ] 方括号 从左到右   2 + 正号 从右到左 单目 - 负号 从右到左 单目 ++ ...

  10. lambda的Func<>函数

    Func<int,int,int> fc=(int x,int y)=>x*y;Console.WriteLine(fc(5, 2)); //声明一个方法,返回值为int,参数是两个 ...