微软推 Azure 机器学习工具:Algorithm Cheat Sheet

[日期:2015-05-15] 来源:CSDN  作者:Linux [字体: ]
 

Azure Machine Learning Studio 有着大量的机器学习算法,现在你可以使用它来构建预测分析解决方案。这些算法可用于一般的机器学习:回归分析、分类、聚类和异常检测,且每一个都可以解决不同类型的机器学习问题。

现在的问题是,是否有什么工具之类的东西可帮助找出如何选择一个合适的机器学习算法,并根据具体的方案?

点击这里查看大图。

点击此处下载 Cheat Sheet:Microsoft Azure Machine Learning Algorithm Cheat Sheet

微软 Azure 的机器学习 Algorithm Cheat Sheet 旨在帮助你筛选可用的机器学习算法,并选择合适的一个来用于预测分析解决方案。Cheat Sheet 会询问你这两个问题:数据的性质、你工作想要解决的问题等,然后提出一个你可以尝试的算法的建议。

Azure Machine Learning Studio 为你提供了灵活的体验:尝试一种算法,如果你对结果不满意,那就尝试另一种。(Azure 机器学习是免费的,也不需要什么许可,点击这里试用。)这里有一个来自 Azure Machine Learning Gallery 的例子,该实验是尝试用几种不同的算法用在相同的数据上,然后进行结果比较:Compare Multi-class Classifiers: Letter recognition

关于 Azure Machine Learning Studio

Azure Machine Learning Studio 提供了许多不同的先进机器学习算法来帮助你生成分析模型。首先,确定要执行的机器学习任务的常规类型,因为归组在每个类别中的算法适合特定的预测任务。

选择一种算法并配置其参数后,可以使用训练模块之一通过选定算法运行数据,也可以使用扫描参数循环访问所有可能的参数并确定任务和数据的最佳配置。

学习算法的类别

Azure Machine Learning Studio 提供了以下各种类型的机器学习算法,它们按典型的机器学习方案来分组。

  • 异常检测

异常检测包含许多机器学习方面的重要任务,异常检测技术适用于各种行业:

1. 标识可能具有欺诈性的事务。
2. 学习指示发生了网络入侵的模式
3. 查找异常的患者群集
4. 检查输入到系统的值

根据定义,异常属于罕见事件,因此可能很难收集有代表性的数据样本来进行建模。本节中包含的算法已经过专门设计,可以解决异常检测的核心构建和训练模型问题。

此类别包括以下模块:单类支持向量机、基于 PCA 的异常检测。

  • 分类

分类算法用于预测单个数据实例的类或类别。例如,电子邮件筛选器使用二元分类来确定某封电子邮件是否为垃圾邮件。有两种形式的分类任务。一种是旨在 预测两个结果之一的二元分类,另一种是旨在预测多个结果之一的多类分类。分类算法的输出为分类器,可用于预测新的(未标记)实例的标签。

类别 Modules References.Machine Learning.Initialize Model.Classification 包括以下模块:多类决策林、多类决策森林、多类逻辑回归、多类神经网络、一对多多类、双类平均感知器、双类贝叶斯点机、双类提升决策树、双类决策林、双类 决策森林、双类逻辑回归、双类神经网络、双类支持向量机、双类局部深层支持向量机。

  • 聚类

聚类算法可以基于一组特征学习了解如何将一组项分组在一起。例如,聚类通常在文本分析中使用,以便将包含常见单词的文本片段分组在一起。可以使用聚 类通过找出最接近的数据点,然后确定每种组合的质心或中心点,来分组未标记的数据。训练算法后,可以使用它来预测数据实例所属的聚类。

类别 Modules References.Machine Learning.Initialize Model.Clustering 包括模块:K 平均值聚类

  • 回归

回归算法是学习预测单个数据实例的实际函数字的算法。例如,房价预测器可以使用回归算法来预测当前的房价。回归算法确定要执行回归函数的数据的每个特征分布。算法训练用于预测标记数据的函数后,可用于预测新的(未标记)实例的标签。

类别 Modules References.Machine Learning.Initialize Model.Regression

英文原文:Microsoft Azure Machine Learning Algorithm Cheat Sheet

本文永久更新链接地址http://www.linuxidc.com/Linux/2015-05/117567.htm

微软推 Azure 机器学习工具:Algorithm Cheat Sheet的更多相关文章

  1. 微软开源自动机器学习工具NNI安装与使用

    微软开源自动机器学习工具 – NNI安装与使用   在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到最佳模型的过程了.对于初学者来说,常常是无从下手.即使是对于有经验的算法工程师 ...

  2. 【重磅】微软开源自动机器学习工具 - NNI

    [重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中 ...

  3. zz【重磅】微软开源自动机器学习工具 - NNI

    [重磅]微软开源自动机器学习工具 - NNI 在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到模型最佳效果的过程了.即使是对于有经验的算法工程师和数据科学家,有时候也很难把握其中 ...

  4. 工具 - 正则Cheat sheet

  5. NNI (Neurol Network Intelligence) 是微软开源的自动机器学习工具

    NNI (Neurol Network Intelligence) 是微软开源的自动机器学习工具 https://www.cnblogs.com/ms-uap/p/9719071.html [重磅]微 ...

  6. Azure机器学习入门(二)创建Azure机器学习工作区

    我们将开始深入了解如何使用Azure机器学习的基本功能,帮助您开始迈向Azure机器学习的数据科学家之路. Azure ML Studio (Azure Machine Learning Studio ...

  7. Azure机器学习入门(一)

    我们开始深入学习Azure机器学习的基本原理并为您开启伟大的数据科学之门.Azure 机器学习的一个重要特征就是在构建预测分析方案时,它能够方便地将开发模式集成为可重复的工作流模式.这就使得Azure ...

  8. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  9. Microsoft宣布为Power BI提供AI模型构建器,关键驱动程序分析和Azure机器学习集成

    微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析 ...

随机推荐

  1. vue在html中出现{{}}原因及解决办法

    在刚开始接触vue的时候,我们都是直接用<script>引入vue.js使用.没有借助vue-cli脚手架来构建项目. 对于一个初学者来说,跟着文档慢慢搬砖,使用vue进行数据绑定. 记得 ...

  2. vim常用快捷键整理

    搜索快捷键 /  关键字n 向下匹配N 向上匹配 移动光标快捷键 gg 命令将光标移动到文档开头,等同于 1GG 命令将光标移动到文档末尾0 或功能键[Home] 这是数字『 0 』:移动到这一行的最 ...

  3. [leetcode] 5.Longest Palindromic Substring-2

    想了很多方法 搞轴对称,算对称轴,偶数都高出了一堆0.5在那加加减减,最后发现在移轴之前可能就返回了. class Solution: def longestPalindrome(self, s: s ...

  4. python经典例题100题01

    [程序1] 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? ans = [i*100+j*10+k for i in range(1, 5) for j in ra ...

  5. Ticwatch2_3G版省电优化

    设置 --> 网络与连接 --> 云消息同步(禁用) 设置 --> 声音与震动 --> 铃声与音量(静音) 设置 --> 声音与震动 --> 闹钟音量(静音) 设置 ...

  6. 程序人生 | 35岁以上的 iOS 程序员都到哪里去了?

    1.网上流传华为公司正在清理 34 岁以上的员工. " 中国区开始集中清理 34 + 的交付员工,...... 去向是跟海外服务部门交换今年新毕业的校招员工,也就是进新人,出旧人. 这些旧人 ...

  7. sk-learn 决策树的超参数

    一.参数criterion:特征选择标准,[entropy, gini].默认gini,即CART算法. splitter:特征划分标准,[best, random].best在特征的所有划分点中找出 ...

  8. markdown 【demo】

    第一次开始 用markdown 编辑器 public class{ public static void main (String[] agrs){ System.out.println(" ...

  9. [源码分析]读写锁ReentrantReadWriteLock

    一.简介 读写锁. 读锁之间是共享的. 写锁是独占的. 首先声明一点: 我在分析源码的时候, 把jdk源码复制出来进行中文的注释, 有时还进行编译调试什么的, 为了避免和jdk原生的类混淆, 我在类前 ...

  10. 配置rpm包安装的jdk环境变量

    最近在搭建james邮件服务的时候,由于这个服务是用Java开发的,之前这台服务器跑过tomcat服务,故有Java环境,就没在意有无配置环境变量,但在启动james的时候报没有配置环境变量: 那么问 ...