[物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量
5. 3. 1 质量守恒定律
$$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$
5. 3. 2 应力
1. 弹性体所受荷载中的外力部分有体积力 ${\bf b}$, 表面力 ${\bf \tau}$.
2. 在荷载的作用下, 弹性体发生变形. $M$ 处 ${\bf\nu}$ 方向的应力向量 $$\bex {\bf \sigma} =\lim_{{\bf\nu}\perp\lap S\to 0}\cfrac{\lap {\bf f}}{\lap S}. \eex$$ ${\bf \sigma}$ 的方向一般不是 ${\bf\nu}$ 的方向.
3. Cauchy 应力原理: ${\bf \sigma}={\bf \sigma}(t,y,{\bf\nu})$, 与 $\lap S$ 的选择无关.
4. 据 Newton 第三定律, $$\bex {\bf \sigma}(t,y,-{\bf\nu})=-{\bf \sigma}(t,y,{\bf\nu}). \eex$$
5. 3. 3 动量守恒定律的积分形式
1. 引理 $$\bex \cfrac{\rd }{\rd t}\int_{G_t} \rho \phi\rd y =\int_{G_t} \phi\cfrac{\rd \phi}{\rd t}\rd y. \eex$$
2. 动量守恒定律的积分形式 $$\bex \int_{G_t}\rho \cfrac{\rd {\bf v}}{\rd t}\rd y =\int_{S_t} {\bf \sigma}\rd S_t+\int_{G_t} \rho{\bf b}\rd y. \eex$$
5. 3. 4 动量矩守恒定律的积分形式
动量矩守恒定律的积分形式 $$\bex \int_{G_t} \rho\sex{{\bf y}\times \cfrac{\rd {\bf v}}{\rd t}}\rd y =\int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t +\int_{G_t}\rho({\bf y}\times {\bf b})\rd y. \eex$$
5. 3. 5 Cauchy 应力张量
1. 存在二阶张量 ${\bf T}(y)$, 使得 $$\bex {\bf \sigma}({\bf y},{\bf\nu})={\bf T}(y){\bf\nu}. \eex$$
2. ${\bf T}({\bf y})$ 称为 Cauchy 应力张量, $t_{ii}\ (i=1,2,3)$ 称为正应力, $t_{ij}\ (i\neq j)$ 称为剪应力.
5. 3. 6 在空间描述下动量守恒定律的微分形式, Cauchy 应力张量的对称性
1. 动量守恒定律的微分形式 $$\bex \rho\cfrac{\rd {\bf v}}{\rd t} -\Div_y{\bf T}-\rho{\bf b}={\bf 0}. \eex$$
2. $({\bf a}\times {\bf b})_i=\ve_{ijk}a_jb_k$, 其中 $$\bex \ve_{ijk}=\sedd{\ba{lll} 1,&(i,j,k)\ is\ an\ even\ permuatation\ of\ (1,2,3),\\ -1,&(i,j,k)\ is\ an\ odd\ permuatation\ of\ (1,2,3),\\ 0,&others. \ea} \eex$$
3. 动量矩守恒定律的微分形式等价于 Cauchy 应力张量的对称性: $$\bex t_{ij}=t_{ji},\quad (1\leq i,j\leq 3). \eex$$
5. 3. 7 Piola 应力张量, 物质描述下动量守恒定律的微分形式
1. 引理: 设 $\Omega$ 中 ${\bf x}$ 处的曲面微元 $\rd S_0$ (其单位法向量为 ${\bf n}$) 在变形 ${\bf y}={\bf y}(t,{\bf x})$ 下对应于 $\Omega_t$ 中的曲面微元 $\rd S_t$ (其单位法向量为 ${\bf\nu}$). 那么 $$\bex {\bf\nu}\rd S_t=J{\bf F}^{-T}{\bf n}\rd S_0, \eex$$ 其中 ${\bf F}=(\n_x{\bf y})$, $J=|{\bf F}|$.
2. 动量守恒定律的微分形式 $$\bex \rho_0\cfrac{\p {\bf v}}{\p t} =\Div_x{\bf P}+\rho_0{\bf b}, \eex$$ 其中 ${\bf P}$ 为 Piola 应力张量, 定义为 $$\bex {\bf T}{\bf\nu} \rd S_t={\bf P}{\bf n}\rd S_0. \eex$$
3. 动量矩守恒定律等价于第二 Piola 应力张量 ${\bf \Sigma}={\bf F}^{-1}{\bf P}$ 为对称张量.
[物理学与PDEs]第5章第3节 守恒定律, 应力张量的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- HTMLCSS--案例| 超链接美化 | 模态框 | tab栏选项卡
一.超链接美化 二.模态框 三.tab栏选项卡 -------------------------------------------- 一.超链接美化 <!DOCTYPE html> & ...
- 【Python 03】程序设计与Python语言概述
人生苦短,我用Python. Python在1990年诞生于荷兰,2010年Python2发布最后一版2.7,Python核心团队计划在2020年停止支持 Python2,目前Python3是未来. ...
- jpa 分页
public Page<Stability> testPager(){ Pageable pageable = new PageRequest(1, 10, Sort.Direction. ...
- linux下安装nodejs及npm
转:https://www.cnblogs.com/wuyoucao/p/7011666.html 1.下载npm包 官网下载npm安装包,https://nodejs.org/en/,左边是稳定版右 ...
- android开发学习 ------- 关于getSupportFragmentManager()不可用的问题
在Android开发中,少不了Fragment的运用. 目前在实际运用中,有v-4包下支持的Fragment以及app包下的Fragment,这两个包下的FragmentManager获取方式有点区别 ...
- elementUi源码解析(1)--项目结构篇
因为在忙其他事情好久没有更新iview的源码,也是因为后面的一些组件有点复杂在考虑用什么方式把复杂的功能逻辑简单的展示出来,还没想到方法,突然想到element的组件基本也差不多,内部功能的逻辑也差不 ...
- 关于B树B+树的详细解释——绝对精彩
B树是一种完全平衡树,B+树是B树的升级版,使用更多.B树和B+树存在的目的是如何提高磁盘文件的访问(如数据库)效率. 关于B树和B+树的一篇比较好的文章: https://www.cnblogs.c ...
- Django admin注册model究竟要怎么写才优雅 批量注册model
比如在Django admin 注册models时,会用到. 对于APP里自带的models,可以使用这种方式注册. from django.contrib import admin # Regist ...
- 关于mysql中的count()函数
1.count()函数是用来统计表中记录的一个函数,返回匹配条件的行数. 2.count()语法: (1)count(*)---包括所有列,返回表中的记录数,相当于统计表的行数,在统计结果的时候,不会 ...
- Python——序列化模块
#json 模式 1.dumps.loads 方法 针对内存 dic = {'k1':'v1'} #转换成json import json str_d = json.dumps(dic) #序列化 ...