5. 3 守恒定律, 应力张量

5. 3. 1 质量守恒定律

$$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$

5. 3. 2 应力

1.  弹性体所受荷载中的外力部分有体积力 ${\bf b}$, 表面力 ${\bf \tau}$.

2.  在荷载的作用下, 弹性体发生变形. $M$ 处 ${\bf\nu}$ 方向的应力向量 $$\bex {\bf \sigma} =\lim_{{\bf\nu}\perp\lap S\to 0}\cfrac{\lap {\bf f}}{\lap S}. \eex$$ ${\bf \sigma}$ 的方向一般不是 ${\bf\nu}$ 的方向.

3.  Cauchy 应力原理: ${\bf \sigma}={\bf \sigma}(t,y,{\bf\nu})$, 与 $\lap S$ 的选择无关.

4.  据 Newton 第三定律, $$\bex {\bf \sigma}(t,y,-{\bf\nu})=-{\bf \sigma}(t,y,{\bf\nu}). \eex$$

5. 3. 3 动量守恒定律的积分形式

1.  引理 $$\bex \cfrac{\rd }{\rd t}\int_{G_t} \rho \phi\rd y =\int_{G_t} \phi\cfrac{\rd \phi}{\rd t}\rd y.  \eex$$

2.  动量守恒定律的积分形式 $$\bex \int_{G_t}\rho \cfrac{\rd {\bf v}}{\rd t}\rd y =\int_{S_t} {\bf \sigma}\rd S_t+\int_{G_t} \rho{\bf b}\rd y.  \eex$$

5. 3. 4 动量矩守恒定律的积分形式

动量矩守恒定律的积分形式 $$\bex \int_{G_t} \rho\sex{{\bf y}\times \cfrac{\rd {\bf v}}{\rd t}}\rd y =\int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t +\int_{G_t}\rho({\bf y}\times {\bf b})\rd y.  \eex$$

5. 3. 5 Cauchy 应力张量

1.  存在二阶张量 ${\bf T}(y)$, 使得 $$\bex {\bf \sigma}({\bf y},{\bf\nu})={\bf T}(y){\bf\nu}.  \eex$$

2.  ${\bf T}({\bf y})$ 称为 Cauchy 应力张量, $t_{ii}\ (i=1,2,3)$ 称为正应力, $t_{ij}\ (i\neq j)$ 称为剪应力.

5. 3. 6 在空间描述下动量守恒定律的微分形式, Cauchy 应力张量的对称性

1.  动量守恒定律的微分形式 $$\bex \rho\cfrac{\rd {\bf v}}{\rd t} -\Div_y{\bf T}-\rho{\bf b}={\bf 0}. \eex$$

2.  $({\bf a}\times {\bf b})_i=\ve_{ijk}a_jb_k$, 其中 $$\bex \ve_{ijk}=\sedd{\ba{lll} 1,&(i,j,k)\ is\ an\ even\ permuatation\ of\ (1,2,3),\\ -1,&(i,j,k)\ is\ an\ odd\ permuatation\ of\ (1,2,3),\\ 0,&others.  \ea} \eex$$

3.  动量矩守恒定律的微分形式等价于 Cauchy 应力张量的对称性: $$\bex t_{ij}=t_{ji},\quad (1\leq i,j\leq 3). \eex$$

5. 3. 7 Piola 应力张量, 物质描述下动量守恒定律的微分形式

1.  引理: 设 $\Omega$ 中 ${\bf x}$ 处的曲面微元 $\rd S_0$ (其单位法向量为 ${\bf n}$) 在变形 ${\bf y}={\bf y}(t,{\bf x})$ 下对应于 $\Omega_t$ 中的曲面微元 $\rd S_t$ (其单位法向量为 ${\bf\nu}$). 那么 $$\bex {\bf\nu}\rd S_t=J{\bf F}^{-T}{\bf n}\rd S_0, \eex$$ 其中 ${\bf F}=(\n_x{\bf y})$, $J=|{\bf F}|$.

2.  动量守恒定律的微分形式 $$\bex \rho_0\cfrac{\p {\bf v}}{\p t} =\Div_x{\bf P}+\rho_0{\bf b}, \eex$$ 其中 ${\bf P}$ 为 Piola 应力张量, 定义为 $$\bex {\bf T}{\bf\nu} \rd S_t={\bf P}{\bf n}\rd S_0.  \eex$$

3.  动量矩守恒定律等价于第二 Piola 应力张量 ${\bf \Sigma}={\bf F}^{-1}{\bf P}$ 为对称张量.

[物理学与PDEs]第5章第3节 守恒定律, 应力张量的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性

    设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

随机推荐

  1. nuxt cdn等

    https://blog.csdn.net/xuelang532777032/article/details/78398960

  2. e297: write error in swap file

    磁盘空间不足: [root@ipservice fountain]# df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/dock ...

  3. Ubuntu 18.04.1 下快速搭建 LNMP环境

    1.Nginx的安装 Nginx安装是属于最简单的,只需要在命令行执行 sudo apt-get install nginx 就能自动安装 Nginx,其中过程中需要 选择 Y/n 的选择Y就行了,当 ...

  4. centos7下kubernetes(18。kubernetes-健康检查)

    自愈能力是容器的重要特性.自愈的默认方式是自动重启发生故障的容器. 用户还可以通过liveness和readiness探测机制设置更精细的健康检查,进而实现: 1.零停机部署 2.避免部署无效的镜像 ...

  5. 强大的scrollReveal库,炫酷的页面缓入效果。

    首先我问来看一下这个强大的插件能做出什么效果,下面是我找的一个网站: http://kepler.gl/#/, 接下来看看官网给出的效果:https://scrollrevealjs.org/. 是不 ...

  6. java获取类加载路径和项目根路径的5种方法

    // 第一种:获取类加载的根路径 D:\IDEAWorkspace\hs-bluetooth-lock\src\applications\bluetooth-api\target\classes Fi ...

  7. error C2381: “exit”: 重定义;__declspec(noreturn) 不同

    问题: error C2381: “exit” : 重定义:__declspec(noreturn) 不同 解决办法: 调换一下头文件的包含次序: #include <GL/glut.h> ...

  8. Error:Execution failed for task ':app:processDebugManifest'. Manifest merger failed with multiple errors, see logs

    这个异常在网上一搜会出现很多答案,也可能都对. 我都尝试过但是不符合我这边的要求,问题得不到解决.网上的说法是对的,jar包冲突.不过究竟是哪里冲突没办法判断. 最后尝试了一下在module的中没用的 ...

  9. GXOI/GZOI2019题解

    GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include& ...

  10. day03(变量,常量,输入输出,注释,基本数据类型,运算符)

    一,复习 ''' 1.语言的分类 -- 机器语言:直接编写0,1指令,直接能被硬件执行 -- 汇编语言:编写助记符(与指令的对应关系),找到对应的指令直接交给硬件执行 -- 高级语言:编写人能识别的字 ...