NumPy:数组计算

NumPy是高性能科学计算和数据分析的基础包。它是Pandas等其他各种工具的基础

NumPy的主要功能:

  ndarray,一个多维数据结构,高校且节省空间

  无需循环即可对整组数据进行快速运算的数学函数

  读写磁盘数据的工具以及用于操作内存映射文件的工具

  线性代数、随机数生成和傅里叶变化功能

  用于集成C、C++等代码的工具

安装方法:pip install numpy(如果显示命令不存在可以尝试python -m install numpy)

引用方式通常喜欢给numpy模块别名:import numpy as np

NumPy简单使用

例1:已知若干家跨国公司的市值(美元),将其换算为人民币

例2:已知购物车中每件商品的价格与商品件数,求总金额

创建ndarray:np.array()

ndarray是多维数组结构,与列表的区别是:

  数组对象内的元素类型必须相同

  数组大小不可修改

常用属性

T    数组的转置(对二维及以上数组而言)

dtype   数组元素的数据类型

size     数组元素的个数

ndim      数组的维数

shape    数组的维度大小(以元祖的形式)

ndarray创建

arange()    比我们的python3里面的range更加强大,支持浮点数范围

linspance()    类似于arange(),第三个参数为数组长度

zeros()      根据指定形状和dtype创建全0数组

ones()       根据指定形状和dtype创建全1数组

empty()     根据指定形状和dtype创建空数组(随机值)

eye()      根据指定边长和dtype创建单位矩阵

NumPy索引切片

数组和标量(数字)之间的运算

  a+1 a*3 1//a a**0.5

同样大小数组之间的运算

  a+b a/b a**b

数组的索引

一维数组:a[5]

多维数组:

  列表式写法:a[2][3]

  新式写法:a[2,3] (推荐)  逗号隔开,前面作用于行后面作用于列

数组的切片 

一维数组:a[5:8]     a[4:]     a[2:10] = 1

多维数组:a[1:2, 3:4]   a[:,3:5]       a[:,1]

与列表不同,数组切片时并不会自动复制,在切片数组上的修改会影响原数组(因为不会复制一份出去而是沿用原来的内存空间中的值)。 【解决方法:copy()】

NumPy布尔型索引

问题:给一个数组,选出数组中所有大于5的数。

答案:a[a>5]

原理: a>5会对a中的每一个元素进行判断,返回一个布尔数组 布尔型索引:将同样大小的布尔数组传进索引,会返回一个由所有True对应位置的元素的数组

问题2:给一个数组,选出数组中所有大于5的偶数。

问题3:给一个数组,选出数组中所有大于5的数和偶数。

答案:

    a[(a>5) & (a%2==0)]

    a[(a>5) | (a%2==0)]

NumPy花式索引

问题1:对于一个数组,选出其第1,3,4,6,7个元素,组成新的二维数组。

  答案:a[[1,3,4,6,7]]

问题2:对一个二维数组,选出其第一列和第三列,组成新的二维数组。

  答案:a[:,[1,3]]

必会知识点

浮点数特殊值

浮点数:float

浮点数有两个特殊值:

  nan(Not a Number):不等于任何浮点数(nan != nan)

  inf(infinity):比任何浮点数都大

NumPy中创建特殊值:np.nan np.inf

在数据分析中,nan常被用作表示数据缺失值

sum 求和

cumsum 求前缀和(截至当前元素及其前面所有的元素和)

mean 求平均数

std 求标准差

var 求方差

min 求最小值

max 求最大值

argmin 求最小值索引

argmax 求最大值索引

总结

数组中的数据类型必须一致,并且数组大小不可再被更改‘

对于数组求相应值由四种不同的方式:

  正常的索引切片取值

  行列分开的切片取值

  布尔型(生成一个与原数组各元素一一对应的布尔值数组,原数组与该布尔值列表一一对应,值为True的放行~~~)

  

Numpy基本操作的更多相关文章

  1. NumPy基本操作快速熟悉

    NumPy 是 Python 数值计算非常重要的一个包.很多科学计算包都是以 NumPy 的数组对象为基础开发的. 本文用代码快速过了一遍 NumPy 的基本操作,对 NumPy 整体有一个把握.希望 ...

  2. 矩阵库Numpy基本操作

    NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作. 下面对numpy中的操作进行总结. numpy包含两种基本的数据类型 ...

  3. numpy数组的操作

    numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://w ...

  4. numpy的使用方法

    一.numpy快速入门 1.什么是numpy: numpy是python的一个矩阵类型,提供了大量矩阵处理的函数,非正式来说,就是一个使运算更容易,执行更迅速的库,因为它的内部运算是通过c语言而不是p ...

  5. Python的工具包[0] -> numpy科学计算 -> numpy 库及使用总结

    NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是 ...

  6. Numpy和Pandas的使用入门

    Numpy Numpy基本数据结构 np.array()函数接受一个多维list,返回对应纬度的矩阵 vector = np.array([1, 2, 3, 4]) matrix = np.array ...

  7. Pandas快速上手(一):基本操作

    本文包含一些 Pandas 的基本操作,旨在快速上手 Pandas 的基本操作. 读者最好有 NumPy 的基础,如果你还不熟悉 NumPy,建议您阅读NumPy基本操作快速熟悉. Pandas 数据 ...

  8. Python之路-numpy模块

    这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...

  9. 第03章 科学计算库Numpy

    016.Numpy数据结构    关于矩阵运算的库 矩阵 017.Numpy基本操作 判断每一个元素的 018.Numpy矩阵属性 019.Numpy矩阵操作 020.Numpy常用函数 按列拼接就用 ...

随机推荐

  1. 第43章 添加更多API端点 - Identity Server 4 中文文档(v1.0.0)

    您可以向托管IdentityServer4的应用程序添加更多API端点. 您通常希望通过它们所托管的IdentityServer实例来保护这些API.这不是问题.只需将令牌验证处理程序添加到主机(请参 ...

  2. 杭电ACM2013--蟠桃记

    蟠桃记 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  3. 百万级开源MQTT消息服务器 搭建

    下载地址:http://emqtt.com/downloads 文档地址:http://emqtt.com/docs/v2/index.html 开始使用EMQ 2.0 消息服务器简介EMQ (Erl ...

  4. Android开发——EditText的属性使用

    最近使用的EditText控件,有些属性不太清楚,做一下笔记   判断EditText中内容是否为空 EditText多行显示 android:inputType="textMultiLin ...

  5. splay详解(二)

    前言 在上一节中,我们讲述了Splay的核心操作rotate与splay 本节我会教大家如何用这两个函数实现各种强大的功能 为了方便讲解,我们拿这道题做例题来慢慢分析 利用splay实现各种功能 首先 ...

  6. 用WijmoJS搭建您的前端Web应用 —— React

    前文回顾 在本系列文章中,我们已经介绍了Angular和Vue框架下 WijmoJS 的玩法. 而今天,我们将展示如何使用 WijmoJS 来搭建一款具备独特创新性.出色性能和简单代码逻辑的 Reac ...

  7. python 通过元类控制类的创建

    一.python中如何创建类? 1. 直接定义类 class A: a = 'a' 2. 通过type对象创建 在python中一切都是对象 在上面这张图中,A是我们平常在python中写的类,它可以 ...

  8. SQL Server 数据库部分常用语句小结(一)

    1. 查询某存储过程的访问情况 SELECT TOP 1000 db_name(d.database_id) as DBName, s.name as 存储名字, s.type_desc as 存储类 ...

  9. Linux中DHCP服务器的简单配置

    我安装了两台linux系统,一个作为服务器,一个客户端 两个都有3个网卡, 后两个网卡聚合为zhi一个网卡:Linux 网卡聚合 两台电脑都一样. 那么如何为这个聚合网卡进行DHCP的分配呢? 1.由 ...

  10. 使用VsCode自带的Emmet语法

    新建html文件,保存之后,输入"!",按Tap(或Enter)键,自动生成HTML结构 标签只要直接输入标签名(不要输入<>),按Tap(或Enter)键自动生成完整 ...