本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改。

对某个值进行修改

例如,我们想对数据集中第2行第2列的数据进行修改:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"])
print("data:")
print(data) # 对第2行第2列的数据进行修改
data.iloc[2, 2] = 111 print("修改后的数据为:")
print(data)

输出为:

data:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 10 11
2017-01-11 12 13 14 15
2017-01-12 16 17 18 19
2017-01-13 20 21 22 23
修改后的数据为:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 111 11
2017-01-11 12 13 14 15
2017-01-12 16 17 18 19
2017-01-13 20 21 22 23

根据筛选条件设置值

比如,我们想对数据集中B列大于14的数据设置为14值,类似SQL中的:

update table set B = 14 where B>14

具体实现为:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"])
print("data:")
print(data) # 把B列中大于14的数设置为14
data.B[data.B>14] = 14 print("修改后的数据为:")
print(data)

输出为:

data:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 10 11
2017-01-11 12 13 14 15
2017-01-12 16 17 18 19
2017-01-13 20 21 22 23
修改后的数据为:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 10 11
2017-01-11 12 13 14 15
2017-01-12 16 14 18 19
2017-01-13 20 14 22 23

增加一列

增加一列空列数据:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"])
print("data:")
print(data) data["E"] = np.nan print("修改后的数据为:")
print(data)

输出为:

data:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 10 11
2017-01-11 12 13 14 15
2017-01-12 16 17 18 19
2017-01-13 20 21 22 23
修改后的数据为:
A B C D E
2017-01-08 0 1 2 3 NaN
2017-01-09 4 5 6 7 NaN
2017-01-10 8 9 10 11 NaN
2017-01-11 12 13 14 15 NaN
2017-01-12 16 17 18 19 NaN
2017-01-13 20 21 22 23 NaN

这里,我们通过

data["E"] = np.nan

对数据集增加了一列空的数据。

另外,这里不能使用data.E=np.nan的方式对数据集增加一列。

当然,我们也可以把某列的数据增加到一列中:

import pandas as pd
import numpy as np
dates = pd.date_range("2017-01-08", periods=6)
data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"])
print("data:")
print(data) data["E"] = np.arange(6) print("修改后的数据为:")
print(data)

输出为:

data:
A B C D
2017-01-08 0 1 2 3
2017-01-09 4 5 6 7
2017-01-10 8 9 10 11
2017-01-11 12 13 14 15
2017-01-12 16 17 18 19
2017-01-13 20 21 22 23
修改后的数据为:
A B C D E
2017-01-08 0 1 2 3 0
2017-01-09 4 5 6 7 1
2017-01-10 8 9 10 11 2
2017-01-11 12 13 14 15 3
2017-01-12 16 17 18 19 4
2017-01-13 20 21 22 23 5

这样我们新增了一列E。

pandas设置值-【老鱼学pandas】的更多相关文章

  1. pandas合并merge-【老鱼学pandas】

    本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...

  2. pandas画图-【老鱼学pandas】

    本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...

  3. pandas处理丢失数据-【老鱼学pandas】

    假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...

  4. pandas合并数据集-【老鱼学pandas】

    有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...

  5. pandas基本介绍-【老鱼学pandas】

    前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...

  6. pandas导入导出数据-【老鱼学pandas】

    pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...

  7. pandas选择数据-【老鱼学pandas】

    选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...

  8. matplotlib坐标轴设置-【老鱼学matplotlib】

    我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotli ...

  9. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

随机推荐

  1. WebView 安全之 addJavascriptInterface

    WebView是Android平台下的一个重要组件,通常用来在Activity中嵌入一个简单的浏览器,实现在线网页浏览的功能.比如下面代码实现访问Google页面: WebView webView = ...

  2. python常用函数用法整理

    1,zeros函数(同理的还有ones函数) http://www.jb51.net/article/127649.htm 注意: (m,n)是生成m行n列的矩阵,但要生成二维矩阵的时候要用两层括号, ...

  3. 用UE4蓝图制作FPS_零基础学虚幻4第二季

    课时1:案例演示 05:12 课时2:工程准备 07:35 (把一个项目从一个工程移动到另一个工程) 1.新建一个空白工程,不包含初学者内容 2.选择我们要复制的工程,按右键,如下图: 复制到新工程的 ...

  4. BZOJ4259残缺的字符串

    题目描述 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. ...

  5. vue实战记录(六)- vue实现购物车功能之地址列表选配

    vue实战,一步步实现vue购物车功能的过程记录,课程与素材来自慕课网,自己搭建了express本地服务器来请求数据 作者:狐狸家的鱼 本文链接:vue实战-实现购物车功能(六) GitHub:sue ...

  6. 【NOIP2013模拟】终极武器(经典分析+二分区间)

    No.2. [NOIP2013模拟]终极武器 题意: 给定你一些区间,然后让你找出\(1\sim 9\)中的等价类数字. 也就是说在任何一个区间里的任何一个数,把其中后\(k\)位中的某一位换成等价类 ...

  7. crm 动态一级二级菜单

    之前代码菜单是写是的 如何 让他 动态 生成了  首先 添加 2个字段 admin.py 更改 显示 from django.contrib import admin from rbac import ...

  8. MyEclipse 2015 Stable 2.0破解方法

    本篇博文简单介绍一下利用网上说明的方法破解MyEclipse 2015 Stable 2.0的具体细节.因为原来在贴吧上的方法不够详细,所以本人重新整理了一下.方法源自:http://tieba.ba ...

  9. [物理学与PDEs]第1章第1节 引言

    1. 电动力学研究的对象是电磁场, 研究电磁场的基本属性---运动规律及它和带电物质的相互作用. 2. 场, 物质的一种存在方式. 3. Maxwell 方程组是电动力学中的基本方程, 是一切有关电磁 ...

  10. [译]Ocelot - Configuration

    原文 这里有一个配置的样例.配置主要有两个部分.一个是ReRoutes数组,另一个是GlobalConfiguration.ReRoute告诉Ocelot怎么处理上游的请求.Global config ...