导入类库

 import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# 熵增益
# 熵越大,信息量越大,蕴含的不确定性越大
KNN
1.计算待预测值到所有点的距离
2.对所有距离排序
3.找出前K个样本里面类别最多的类,作为待预测值的类别

代码

 A = np.array([[1, 1], [1, 1.5], [0.5, 1.5]])
B = np.array([[3.0, 3.0], [3.0, 3.5], [2.8, 3.1]]) def knn_pre_norm(point):
a_len = np.linalg.norm(point - A, axis=1)
b_len = np.linalg.norm(point - B, axis=1)
print(a_len.min())
print(b_len.min()) def knn_predict_rev(point):
X = np.array([[1, 1], [1, 1.5], [0.5, 1.5], [3.0, 3.0], [3.0, 3.5], [2.8, 3.1]])
Y = np.array([0, 0, 0, 1, 1, 1]) knn = KNeighborsClassifier(n_neighbors=2)
knn.fit(X, Y) print(knn.predict(np.array([[1.0, 3.0]]))) def iris_linear():
# 加载iris数据
li = load_iris()
# 散点图
# plt.scatter(li.data[:, 0], li.data[:, 1], c=li.target)
# plt.scatter(li.data[:, 2], li.data[:, 3], c=li.target)
# plt.show()
# 分割测试集和训练集,测试集占整个数据集的比例是0.25
x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)
# 创建KNN分类,使用最少5个邻居作为类别判断标准
knn = KNeighborsClassifier(n_neighbors=5)
# 训练数据
knn.fit(x_train, y_train)
# 预测测试集
# print(knn.predict(x_test))
# 预测np.array([[6.3, 3, 5.2, 2.3]])
print(knn.predict(np.array([[6.3, 3, 5.2, 2.3]])))
# 预测np.array([[6.3, 3, 5.2, 2.3]])所属各个类别的概率
print(knn.predict_proba(np.array([[6.3, 3, 5.2, 2.3]]))) if __name__ == '__main__':
# knn_predict_rev(None)
# knn_pre_norm(np.array([2.3,2.3]))
iris_linear()

机器学习——KNN的更多相关文章

  1. [机器学习] ——KNN K-最邻近算法

    KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...

  2. 机器学习——kNN(1)基本原理

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  3. 机器学习--kNN算法识别手写字母

    本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k ...

  4. 机器学习-kNN

    基于Peter Harrington所著<Machine Learning in Action> kNN,即k-NearestNeighbor算法,是一种最简单的分类算法,拿这个当机器学习 ...

  5. 机器学习-KNN算法详解与实战

    最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入 ...

  6. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  7. 机器学习 KNN算法原理

    K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.比如:判断一个人的人品,只需要观察 ...

  8. 机器学习-KNN分类器

    1.  K-近邻(k-Nearest Neighbors,KNN)的原理 通过测量不同特征值之间的距离来衡量相似度的方法进行分类. 2.  KNN算法过程 训练样本集:样本集中每个特征值都已经做好类别 ...

  9. ML02: 机器学习KNN 算法

    摘要: 一张图说清楚KNN算法 看下图,清楚了吗?   没清楚的话,也没关系,看完下面几句话,就清楚了. KNN算法是用来分类的. 这个算法是如何来分类的呢? 看下图,你可以想想下图中的 『绿色圆点』 ...

  10. 机器学习——kNN(2)示例:改进约会网站的配对效果

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

随机推荐

  1. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

  2. Hadoop记录-退役

    一.datanode添加新节点 1.在dfs.include文件中包含新节点名称,该文件在名称节点的本地目录下 [白名单] [/app/hadoop/etc/hadoop/dfs.include] 2 ...

  3. Python 各种进制转换

    #coding=gbk var=input("请输入十六进制数:") b=bin(int(var,16)) print(b[2:]) 详细请参考python自带int函数.bin函 ...

  4. UE导航系统详

    配置 Navigation Crowd Manager Class 代理人管理类 可以自定义个 Navigation System Auto Create Navigation Data 导航数据在没 ...

  5. Codeforces Round #449 (Div. 2) D. Ithea Plays With Chtholly

    题目链接 交互题. 题意:给你三个数n,m,k.让你完成至多m次互动,每次给你一个q,让你从n个位置选一个位置放这个数,覆盖已经放过的数.让你再m次使得n个位置的数不递减,达到直接退出. 解法:暴力, ...

  6. JS中some(),every(),forEach(),map(),filter()区别

    JS在1.6中为Array新增了几个方法map(),filter(),some(),every(),forEach(),也就是一共有这么多方法了. 刚开始接触这些倒也记得不是很清楚,在此纪录一下以加深 ...

  7. torch.linspace,unsqueeze()以及squeeze()函数

    1.torch.linspace(start,end,steps=100,dtype) 作用是返回一个一维的tensor(张量),其中dtype是返回的数据类型. import torch print ...

  8. hiho 1097 最小生成树一·Prim算法 (最小生成树)

    题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问 ...

  9. Django模型层-多表操作

    多表操作 一.创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是 ...

  10. 关于PHP上传文件时配置 php.ini 中的 upload_tmp_dir

    在<PHP 5.3 入门经典>9.6.3 的试一试中(P235),给出了一个上传文件的例子,这里的文件格式为jpeg图片(image/jpeg).如果之前未配置 php.ini 中的 up ...