题目:https://loj.ac/problem/2550

只会写20分的搜索……

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int n,m,ans;
bool b[N][N],vis[N][N];
void dfs(int x,int y,bool fx,int lj)
{
if(y>m)y=; if(x>n)x=;
if(vis[x][y])
{
if(x==&&y==)
{
bool fg=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(!vis[i][j]){fg=;break;}
if(!fg)ans+=lj;
}
return;
}
if(b[x][y])fx=; if(!fx)lj++;
vis[x][y]=;
dfs(x+,y,fx,lj); dfs(x,y+,fx,lj);
vis[x][y]=;
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%1d",&b[i][j]);
ans=;
dfs(,,,);
printf("%d\n",ans);
}
return ;
}

观察多篇题解:

https://blog.csdn.net/qq_39972971/article/details/80441415

https://www.cnblogs.com/cjyyb/p/10422074.html

https://blog.csdn.net/scar_lyw/article/details/80411617

由结论可知合法的方案取决于左上角 d*d 怎么决策。(副对角线可以拐,所以是 d 条而不是 2*d-1 条)

枚举 d*d 里向下 i 步,向右 j=d-i 步,那么需要 i 和 n 互质、 j 和 m 互质。这样就是合法方案。考虑已知 i , j ,算贡献。

每个位置 ( x, y ) 都会在 “一轮”(d步) 之后走到 ( x+i , y+j ) 。

( 1, 1 ) 位置第一轮走到 ( i+1 , j+1 ) 。考虑 DP 这个第一轮的走法,就知道全局的走法了。

( 1, 1 ) 只能向下走或向右走。走过位置 ( x, y ) ,意味着会在之后的轮中把 ( x+k*i , y+k*j ) 都走过。

把 “走到第一个障碍为止的步数” 改成 “走到每个障碍为止的步数中的最小值” , 一个位置 ( x, y ) 的权值就是所有 ( x+k*i , y+k*j ) 的是障碍的点的 “走到该点的步数最小值” 取 min ;

就是要 DP 一条从 ( 1, 1 ) 到 ( i+1 , j+1 ) 的只能向下或向右走的路径,该路径贡献是路径上各点权值的最小值。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int Mn(int a,int b){return a<b?a:b;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
const int N=,M=N*N,mod=;
int upt(int x){while(x>=mod)x-=mod;while(x<)x+=mod;return x;} int n,m,lm,c[N][N],dp[N][N][M],ans;
bool b[N][N];
void cz(int &x,int y){x=upt(x+y);}
void solve(int x,int y)
{
memset(dp,,sizeof dp);
dp[][][c[][]]=;
for(int i=;i<=x+;i++)
for(int j=;j<=y+;j++)
for(int k=;k<=lm;k++)
{
int tp=dp[i][j][k]; if(!tp)continue;
if(i<=x)cz(dp[i+][j][Mn(k,c[i+][j])],tp);
if(j<=y)cz(dp[i][j+][Mn(k,c[i][j+])],tp);
}
for(int k=;k<=lm;k++)
ans=(ans+(ll)k*dp[x+][y+][k])%mod;
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
ans=;
scanf("%d%d",&n,&m); lm=n*m;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%1d",&b[i][j]);
int g=gcd(n,m);
for(int x=;x<g;x++)
{
int y=g-x;
if(gcd(x,n)!=||gcd(y,m)!=)continue;
for(int i=;i<=x+;i++)
for(int j=;j<=y+;j++)
{
int d=i+j-;
if(b[i][j]){c[i][j]=d;continue;}
int tx=i+x, ty=j+y; d+=g;
if(tx>n)tx-=n; if(ty>m)ty-=m;
while()
{
if(b[tx][ty]||(tx==i&&ty==j))
{c[i][j]=d;break;}
tx+=x; ty+=y; d+=g;
if(tx>n)tx-=n;if(ty>m)ty-=m;
}
}
solve(x,y);
}
printf("%d\n",ans);
}
return ;
}

LOJ 2550 「JSOI2018」机器人——找规律+DP的更多相关文章

  1. 【LOJ】#2550. 「JSOI2018」机器人

    题解 我不会打表找规律啊QAQ 规律就是 对于\(n = m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每n步一个轮重复 对于\(n != m\)我们找到最大公约数\(d\),在每个\(d ...

  2. LOJ 2546 「JSOI2018」潜入行动——树形DP

    题目:https://loj.ac/problem/2546 dp[ i ][ j ][ 0/1 ][ 0/1 ] 表示 i 子树,用 j 个点,是否用 i , i 是否被覆盖. 注意 s1<= ...

  3. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  4. LOJ 2551 「JSOI2018」列队——主席树+二分

    题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...

  5. LOJ 2547 「JSOI2018」防御网络——思路+环DP

    题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...

  6. @loj - 3157@「NOI2019」机器人

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分 ...

  7. 「JSOI2018」机器人

    在本题当中为了方便,我们将坐标范围改至 \((0 \sim n - 1, 0 \sim m - 1)\),行走即可视作任意一维在模意义下 \(+1\). 同时,注意到一个位置只能经过一次,则可以令 \ ...

  8. LOJ 3092 「BJOI2019」排兵布阵 ——DP

    题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...

  9. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

随机推荐

  1. java Reference

    相关讲解,参考: Java Reference 源码分析 Java Reference详解 Reference: // 名称说明下:Reference指代引用对象本身,Referent指代被引用对象 ...

  2. Beta冲刺 3

    前言 队名:拖鞋旅游队 组长博客:https://www.cnblogs.com/Sulumer/p/10116813.html 作业博客:https://edu.cnblogs.com/campus ...

  3. nginx 添加代理

    1 确认安装路径 ps aux | grep nginx 2.进入配置目录 3.使用vi编辑配置文件 如果是新增,可以参考其他配置,5yy复制相应行,p粘贴,然后修改内容后:wq保存退出 4.验证配置 ...

  4. OO第四次作业

    一.论述测试与正确性论证的差异 我认为论述测试代表从理论的角度来进行运行正确性的判断,而正确性测试则是从实践的角度来看待程序的正确性问题.两者之间有着明显的差异. 正确性论证是仅仅从代码的逻辑结构方面 ...

  5. Java Web安全之程序逻辑缺陷

    Java Web程序逻辑缺陷本质是由于程序设计和开发者设计的程序执行逻辑存在某种缺陷而导致的安全隐患.企业的代码审查和渗透测试通常主要针对的大多是诸如xss攻击和sql注入和跨站点脚本这些头条式漏洞, ...

  6. python学习第二次笔记

    python学习第二次记录 1.格式化输出 name = input('请输入姓名') age = input('请输入年龄') height = input('请输入身高') msg = " ...

  7. Some notes in Stanford CS106A(2)

    1.Local variable(local) ex. int i = 0; factorial(i); the "i" outside the method factorial( ...

  8. 2018—自学Selenium+Python 笔记(一)

    在开始学习前,先唠几句: 身为一个开发人员,为何想要转测试..很多人不解. 但我觉得这并没有什么不可,测试人员是质量的把控者: 要出一个让客户满意的产品,单纯靠开发自测,是不够的..相信其中缘由大家都 ...

  9. int 和 Integer

    现状1+1=?,不加思索2.有一个数字要存储在程序里,不加思索int.那为什么java要弄一个Integer类型出来?有什么用?怎么用?差别在哪儿?度娘说java提供了两种数据类型,一种是值类型,一种 ...

  10. 测试那些事儿—selenium IDE 自动化测试

    浏览器 Firefox Setup 35.0.1 安装完成后设置菜单栏 关闭浏览器自动更新 插件配置(必备武器) FireBug Firebug是firefox下的一个扩展,能够调试所有网站语言,如H ...