python之jieba库
jieba
“结巴”中文分词:做最好的 Python 中文分词组件
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Scroll down for English documentation.
特点
- 支持三种分词模式: - 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
 
- 支持繁体分词 
- 支持自定义词典 
- MIT 授权协议 
友情链接
- https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统
- https://github.com/baidu/AnyQ 百度FAQ自动问答系统
- https://github.com/baidu/Senta 百度情感识别系统
安装说明
代码对 Python 2/3 均兼容
- 全自动安装:easy_install jieba或者pip install jieba/pip3 install jieba
- 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
- 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
- 通过 import jieba来引用
算法
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
主要功能
- 分词
- jieba.cut方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
- jieba.cut_for_search方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
- 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
- jieba.cut以及- jieba.cut_for_search返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
- jieba.lcut以及- jieba.lcut_for_search直接返回 list
- jieba.Tokenizer(dictionary=DEFAULT_DICT)新建自定义分词器,可用于同时使用不同词典。- jieba.dt为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例
# encoding=utf-8
import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式 seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式 seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list)) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
- 添加自定义词典
载入词典
- 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
- 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
- 词典格式和 dict.txt一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
- 词频省略时使用自动计算的能保证分出该词的词频。
例如:
创新办 3 i
云计算 5
凱特琳 nz
台中
- 更改分词器(默认为 - jieba.dt)的- tmp_dir和- cache_file属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。
- 范例: - 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py - 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 
- 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 
 
 
调整词典
- 使用 - add_word(word, freq=None, tag=None)和- del_word(word)可在程序中动态修改词典。
- 使用 - suggest_freq(segment, tune=True)可调节单个词语的词频,使其能(或不能)被分出来。
- 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 
代码示例:
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
- "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
- 关键词提取
基于 TF-IDF 算法的关键词抽取
import jieba.analyse
- jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
- sentence 为待提取的文本
- topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
- withWeight 为是否一并返回关键词权重值,默认值为 False
- allowPOS 仅包括指定词性的词,默认值为空,即不筛选
 
- jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
- 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
- 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
关键词一并返回关键词权重值示例
基于 TextRank 算法的关键词抽取
- jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
- jieba.analyse.TextRank() 新建自定义 TextRank 实例
算法论文: TextRank: Bringing Order into Texts
基本思想:
- 将待抽取关键词的文本进行分词
- 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
- 计算图中节点的PageRank,注意是无向带权图
使用示例:
- 词性标注
- jieba.posseg.POSTokenizer(tokenizer=None)新建自定义分词器,- tokenizer参数可指定内部使用的- jieba.Tokenizer分词器。- jieba.posseg.dt为默认词性标注分词器。
- 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
- 用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
... print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns
- 并行分词
- 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 
- 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 
- 用法: - jieba.enable_parallel(4)# 开启并行分词模式,参数为并行进程数
- jieba.disable_parallel()# 关闭并行分词模式
 
- 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 
- 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 
- 注意:并行分词仅支持默认分词器 - jieba.dt和- jieba.posseg.dt。
- Tokenize:返回词语在原文的起止位置
- 注意,输入参数只接受 unicode
- 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
- 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10
- ChineseAnalyzer for Whoosh 搜索引擎
- 引用: from jieba.analyse import ChineseAnalyzer
- 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
- 命令行分词
使用示例:python -m jieba news.txt > cut_result.txt
命令行选项(翻译):
使用: python -m jieba [options] filename
结巴命令行界面。
固定参数:
  filename              输入文件
可选参数:
  -h, --help            显示此帮助信息并退出
  -d [DELIM], --delimiter [DELIM]
                        使用 DELIM 分隔词语,而不是用默认的' / '。
                        若不指定 DELIM,则使用一个空格分隔。
  -p [DELIM], --pos [DELIM]
                        启用词性标注;如果指定 DELIM,词语和词性之间
                        用它分隔,否则用 _ 分隔
  -D DICT, --dict DICT  使用 DICT 代替默认词典
  -u USER_DICT, --user-dict USER_DICT
                        使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
  -a, --cut-all         全模式分词(不支持词性标注)
  -n, --no-hmm          不使用隐含马尔可夫模型
  -q, --quiet           不输出载入信息到 STDERR
  -V, --version         显示版本信息并退出
如果没有指定文件名,则使用标准输入。
--help 选项输出:
$> python -m jieba --help
Jieba command line interface.
positional arguments:
  filename              input file
optional arguments:
  -h, --help            show this help message and exit
  -d [DELIM], --delimiter [DELIM]
                        use DELIM instead of ' / ' for word delimiter; or a
                        space if it is used without DELIM
  -p [DELIM], --pos [DELIM]
                        enable POS tagging; if DELIM is specified, use DELIM
                        instead of '_' for POS delimiter
  -D DICT, --dict DICT  use DICT as dictionary
  -u USER_DICT, --user-dict USER_DICT
                        use USER_DICT together with the default dictionary or
                        DICT (if specified)
  -a, --cut-all         full pattern cutting (ignored with POS tagging)
  -n, --no-hmm          don't use the Hidden Markov Model
  -q, --quiet           don't print loading messages to stderr
  -V, --version         show program's version number and exit
If no filename specified, use STDIN instead.
延迟加载机制
jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
import jieba
jieba.initialize()  # 手动初始化(可选)
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
其他词典
- 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 
- 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')
其他语言实现
结巴分词 Java 版本
作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis
结巴分词 C++ 版本
作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba
结巴分词 Node.js 版本
作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba
结巴分词 Erlang 版本
作者:falood 地址:https://github.com/falood/exjieba
结巴分词 R 版本
作者:qinwf 地址:https://github.com/qinwf/jiebaR
结巴分词 iOS 版本
作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba
结巴分词 PHP 版本
作者:fukuball 地址:https://github.com/fukuball/jieba-php
结巴分词 .NET(C#) 版本
作者:anderscui 地址:https://github.com/anderscui/jieba.NET/
结巴分词 Go 版本
- 作者: wangbin 地址: https://github.com/wangbin/jiebago
- 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba
结巴分词Android版本
- 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android
系统集成
分词速度
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
常见问题
1. 模型的数据是如何生成的?
详见: https://github.com/fxsjy/jieba/issues/7
2. “台中”总是被切成“台 中”?(以及类似情况)
P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低
解决方法:强制调高词频
jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True)
3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况)
解决方法:强制调低词频
jieba.suggest_freq(('今天', '天气'), True)
或者直接删除该词 jieba.del_word('今天天气')
4. 切出了词典中没有的词语,效果不理想?
解决方法:关闭新词发现
jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False)
更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
python之jieba库的更多相关文章
- Python之jieba库的使用
		jieba库,它是Python中一个重要的第三方中文分词函数库. 1.jieba的下载 由于jieba是一个第三方函数库,所以需要另外下载.电脑搜索“cmd”打开“命令提示符”,然后输入“pip in ... 
- python 学习jieba库遇到的问题及解决方法
		昨天在课堂上学习了jieba库,跟着老师写了同样的代码时却遇到了问题: jieba分词报错AttributeError: module 'jieba' has no attribute 'cut' 文 ... 
- python 利用jieba库词频统计
		1 #统计<三国志>里人物的出现次数 2 3 import jieba 4 text = open('threekingdoms.txt','r',encoding='utf-8').re ... 
- python实例:利用jieba库,分析统计金庸名著《倚天屠龙记》中人物名出现次数并排序
		本实例主要用到python的jieba库 首先当然是安装pip install jieba 这里比较关键的是如下几个步骤: 加载文本,分析文本 txt=open("C:\\Users\\Be ... 
- python第三方库------jieba库(中文分词)
		jieba“结巴”中文分词:做最好的 Python 中文分词组件 github:https://github.com/fxsjy/jieba 特点支持三种分词模式: 精确模式,试图将句子最精确地切开, ... 
- python jieba库的基本使用
		第一步:先安装jieba库 输入命令:pip install jieba jieba库常用函数: jieba库分词的三种模式: 1.精准模式:把文本精准地分开,不存在冗余 2.全模式:把文中所有可能的 ... 
- python 读写txt文件并用jieba库进行中文分词
		python用来批量处理一些数据的第一步吧. 对于我这样的的萌新.这是第一步. #encoding=utf-8 file='test.txt' fn=open(file,"r") ... 
- python入门之jieba库的使用
		对于一段英文,如果希望提取其中的的单词,只需要使用字符串处理的split()方法即可,例如“China is a great country”. 然而对于中文文本,中文单词之间缺少分隔符,这是中文 ... 
- Python基础库之jieba库的使用(第三方中文词汇函数库)
		各位学python的朋友,是否也曾遇到过这样的问题,举个例子如下: “I am proud of my motherland” 如果我们需要提取中间的单词要走如何做? 自然是调用string中的spl ... 
随机推荐
- 问题1:Oracle数据库监听启动失败(重启监听,提示The listener supports no services)
			编辑监听文件:/home/DB/oracle/11gR2/db/network/admin/listener.ora 在文件内添加静态监听实例,如下内容: SID_LIST_LISTENER =(SI ... 
- Asp.Net Core通过HttpStatusCode状态处理响应结果
			在我的一个Asp.Net Core 2.1 的项目中,我们需要通过获得服务器返回的状态,去实现不用的操作,经过多方资料查询和实践,个人总结一种方法 一.修改控制器 在要返回值的控制器Action中,R ... 
- Java ASM 技术简介
			什么是ASM ASM 是一个 Java 字节码操控框架.它能被用来动态生成类或者增强既有类的功能.ASM 可以直接产生二进制 class 文件,也可以在类被加载入 Java 虚拟机之前动态改变类行为. ... 
- lvm语法2
			LVM组成; LVM:logic volume manager .LVM即逻辑卷管理,现在使用版本为第二版,即version2 逻辑卷:pv,physical volume,即计算机上的磁盘设备,例如 ... 
- 实践练习_使用HTML标签制作一个注册界面03
			使用HTML标签制作一个注册界面▲▲▲▲★1) 注册界面需要有用户名.密码.性别(单选).爱好(多选).专业(下拉列表)2) 注册界面需要有隐藏域和文件域3) 注册界面需要有提交和重置按钮4) 将上述 ... 
- Delphi7第三方控件
			控件安装(安装时建议先关闭Delphi) 1.只有一个DCU文件的组件. DCU文件是编译好的单元文件,这样的组件是作者不想把源码公布.一般来说,作者必须说明此组件适合Delphi的哪种版本,如果版本 ... 
- 从零开始写自己的PHP框架系列教程[前言]
			我觉得程序员进步的理由:多看->多写->多总结 我自我介绍下,我不是程序员,但是我爱编程,作为业余程序员自己写框架让人感到兴奋的,目前有很多框架(js有jQuery.Express.soc ... 
- time模块(时间)
			time.time() #返回当前时间的时间戳 time.sleep() #CPU休息时间 print(time.clock()) #计算CPU执行时间 time.gmtime() #结构化时间 UT ... 
- 【Coucurrency-CountDownLatch】-20161203-0002
			简介 java异步任务相关的工具.主要用在某些线程需要等到其他线程完成某些操作后才能执行的场景. 等待线程需要显示的调用wait方法,表示线程当前挂起,需要等到countdownLatch到0才执行. ... 
- wps  邮件 通讯小灵通   长沙杭州
			记得在天涯上看过一个热贴,关于贵族与世家的,文中提到号称当今贵族的六大世家,什么“汝南周氏”.“吴兴沈氏”之类,更有甚者,为了比拼,追本溯源,把孔子他老人家也抬了出来,号称孔夫子的多少多少代传人,当时 ... 
