knn算法详解
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。判断邻居就是用向量距离大小来刻画。
一张必不可少的图算法流程
缺点
import numpy as np
import matplotlib.pyplot as plt #绘图
import pandas as pd
再导入数据集
以excel格式为例,我的iris目标文件存储在
"D://test_knn"中
url = "D://test_knn./iris.csv" #url path # Assign column names to the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class'] # Read dataset to pandas dataframe
dataset = pd.read_csv(url, names=names)
可以用下面函数检验导入是否成功
dataset.head() #默认读取前五行
输出结果如下:
sepal-length sepal-width petal-length petal-width Class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
2.Preprocessing the dataset 数据预处理
x= dataset.iloc[:, :-1].values #x 属性
#第一个冒号是所有列,第二个是所有行,除了最后一个(Purchased) y = dataset.iloc[:, 4].values #y 标签
# 只取最后一个作为依赖变量。
3.Train Test Split
把数据划分成训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
80%的数据划分到训练集,20%的数据划分到测试集
4.Feature scaling
from sklearn.preprocessing import StandardScaler #导入库 这个不知道可以去查查用法
scaler = StandardScaler()
scaler.fit(X_train) X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
5.Training and Predictions 训练预测
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5) # k=5
classifier.fit(X_train, y_train)
y_pred=classifier.predict(X_test)
6.Evaluating the algorithm
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
预期输出结果如下:
The output of the above script looks like this:
[[11 0 0]
0 13 0]
0 1 6]]
precision recall f1-score support Iris-setosa 1.00 1.00 1.00 11
Iris-versicolor 1.00 1.00 1.00 13
Iris-virginica 1.00 1.00 1.00 6
avg/total 1.00 1.00 1.00 30
7.Comparing Error Rate with the K Value
把各种可能的k的取值,及其对应的分类误差率(error rate)绘制在一张图上。
error = [] # Calculating error for K values between 1 and 40
for i in range(1, 40):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train, y_train)
pred_i = knn.predict(X_test)
error.append(np.mean(pred_i != y_test))
plt.figure(figsize=(12, 6))
plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=10)
plt.title('Error Rate K Value')
plt.xlabel('K Value')
plt.ylabel('Mean Error')
输出结果预期如下:

至此, 这套knn算法就实现了,现在体会到python工具包的强大了,好多底层的算法都不需要自己写函数实现。
搜了一下用C实现knn,代码很繁琐,但是很直观,每一步干什么很清楚。python写的话呢,如果对这些库不熟悉,那就很头秃了,需要一个一个函数查它的用法,不过,如果真的掌握了可以更快更轻松地实现。就是这样子了!
刚开始做的时候看到一堆代码,一脸懵逼,感觉在看文言文一样。其实只要耐心看,真的只是了解一点库函数用法,算法本身思想很简单!
第一个机器学习算法笔记,开心!
knn算法详解的更多相关文章
- 算法代码[置顶] 机器学习实战之KNN算法详解
改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技 ...
- 机器学习-KNN算法详解与实战
最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入 ...
- 机器学习-K近邻(KNN)算法详解
一.KNN算法描述 KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
随机推荐
- 【LOJ6515】贪玩蓝月
题目大意 有一个双端队列,每个元素是一个物品,每个物品有体积和价值两个属性. 有 \(n\) 个操作,分为 \(5\) 种:前后端插入删除,还有询问:选出一些物品,满足这些物品的体积之和模 \(p\) ...
- YUI Compressor
简介 根据雅虎卓越性能团队的说法,40%到60%的雅虎用户拥有空闲缓存体验,所有页面浏览量中约有20%是使用空缓存完成的(请参阅Tenni Theurer在YUIBlog上的这篇文章)有关浏览器缓存使 ...
- Haproxy 安装及配置
Haproxy介绍 HAProxy是一个特别适用于高可用性环境的TCP/HTTP开源的反向代理和负载均衡软件.实现了一种事件驱动,单一进程模型,支持非常大的并发连接,是因为事件驱动模型有更好的资源和时 ...
- Attention Model(注意力模型)思想初探
1. Attention model简介 0x1:AM是什么 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但 ...
- 记一场与 cookie 的相遇
简介: cookie 翻译过来为 “小甜点,一种酥性甜饼干,很美味的...”,咳咳,打住!我们这里说的是 “甜点” 文件,它是浏览器储存在用户电脑上的一小段纯文本格式的文件. 由于 http 是一种无 ...
- 背景上实现阴影——linear-gradient
/*从元素顶部有条阴影,两种方式,第二种更好,能控制阴影的宽度*/background-image: linear-gradient(0deg, rgba(226, 226, 226, 0) 97%, ...
- Linux 文本处理工具记录
Shuffle lines of multi files 现在有 1000 个文本文件(0.txt ~ 999.txt),每个文件大概 11M,总共 11G,我想把这 1000 个文本文件的内容随机组 ...
- 浅入深出Vue:工具准备之PostMan安装配置及Mock服务配置
浅入深出Vue之工具准备(二):PostMan安装配置 由于家中有事,文章没顾得上.在此说声抱歉,这是工具准备的最后一章. 接下来就是开始环境搭建了~尽情期待 工欲善其事必先利其器,让我们先做好准备工 ...
- 剑指Offer-翻转单词顺序列
题目描述 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但却读不懂它的意思.例如,"st ...
- 阿里云服务器ftp连接后21端口无法使用的问题
今天在阿里云Centos上搭了一个ftp 服务,开启了20和21端口的权限.但是用工具和ftp命令登录,均超时. ftp命令登录成功后不能使用ls 命令,直接超时. 工具登录成功后 获取根目录失败,也 ...