决策树

算法优缺点:

  • 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据

  • 缺点:可能会产生过度匹配的问题

  • 适用数据类型:数值型和标称型

算法思想:

1.决策树构造的整体思想:

决策树说白了就好像是if-else结构一样,它的结果就是你要生成这个一个可以从根开始不断判断选择到叶子节点的树,但是呢这里的if-else必然不会是让我们认为去设置的,我们要做的是提供一种方法,计算机可以根据这种方法得到我们所需要的决策树。这个方法的重点就在于如何从这么多的特征中选择出有价值的,并且按照最好的顺序由根到叶选择。完成了这个我们也就可以递归构造一个决策树了

2.信息增益

划分数据集的最大原则是将无序的数据变得更加有序。既然这又牵涉到信息的有序无序问题,自然要想到想弄的信息熵了。这里我们计算用的也是信息熵(另一种方法是基尼不纯度)。公式如下:

数据需要满足的要求:

1 数据必须是由列表元素组成的列表,而且所有的列白哦元素都要具有相同的数据长度
2 数据的最后一列或者每个实例的最后一个元素应是当前实例的类别标签

函数:

calcShannonEnt(dataSet)
计算数据集的香农熵,分两步,第一步计算频率,第二部根据公式计算香农熵
splitDataSet(dataSet, aixs, value)
划分数据集,将满足X[aixs]==value的值都划分到一起,返回一个划分好的集合(不包括用来划分的aixs属性,因为不需要)
chooseBestFeature(dataSet)
选择最好的属性进行划分,思路很简单就是对每个属性都划分下,看哪个好。这里使用到了一个set来选取列表中唯一的元素,这是一中很快的方法
majorityCnt(classList)
因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类还是没有算完,这时候就会采用多数表决的方式计算节点分类
createTree(dataSet, labels)
基于递归构建决策树。这里的label更多是对于分类特征的名字,为了更好看和后面的理解。

  1.  #coding=utf-8
    import operator
    from math import log
    import time def createDataSet():
    dataSet=[[1,1,'yes'],
    [1,1,'yes'],
    [1,0,'no'],
    [0,1,'no'],
    [0,1,'no']]
    labels = ['no surfaceing','flippers']
    return dataSet, labels #计算香农熵
    def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for feaVec in dataSet:
    currentLabel = feaVec[-1]
    if currentLabel not in labelCounts:
    labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
    prob = float(labelCounts[key])/numEntries
    shannonEnt -= prob * log(prob, 2)
    return shannonEnt def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
    if featVec[axis] == value:
    reducedFeatVec = featVec[:axis]
    reducedFeatVec.extend(featVec[axis+1:])
    retDataSet.append(reducedFeatVec)
    return retDataSet def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1#因为数据集的最后一项是标签
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0.0
    for value in uniqueVals:
    subDataSet = splitDataSet(dataSet, i, value)
    prob = len(subDataSet) / float(len(dataSet))
    newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy -newEntropy
    if infoGain > bestInfoGain:
    bestInfoGain = infoGain
    bestFeature = i
    return bestFeature #因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类
    #还是没有算完,这时候就会采用多数表决的方式计算节点分类
    def majorityCnt(classList):
    classCount = {}
    for vote in classList:
    if vote not in classCount.keys():
    classCount[vote] = 0
    classCount[vote] += 1
    return max(classCount) def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) ==len(classList):#类别相同则停止划分
    return classList[0]
    if len(dataSet[0]) == 1:#所有特征已经用完
    return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
    subLabels = labels[:]#为了不改变原始列表的内容复制了一下
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,
    bestFeat, value),subLabels)
    return myTree def main():
    data,label = createDataSet()
    t1 = time.clock()
    myTree = createTree(data,label)
    t2 = time.clock()
    print myTree
    print 'execute for ',t2-t1
    if __name__=='__main__':
    main()

    机器学习笔记索引

决策树的python实现的更多相关文章

  1. 决策树及其python实现

    剪枝 由于悲观错误剪枝 PEP (Pessimistic Error Pruning).代价-复杂度剪枝 CCP (Cost-Complexity Pruning).基于错误剪枝 EBP (Error ...

  2. scikit-learn决策树的python实现以及作图

    decsion tree(决策树) 其中每个内部结点表示在一个属性上的测试,每个分支代表一个属性的输出,而每个树叶结点代表类或类的分布.树的最顶层是根节点 连续变量要离散化 机器学习中分类方法的一个重 ...

  3. 100天搞定机器学习|Day23-25 决策树及Python实现

    算法部分不再细讲,之前发过很多: [算法系列]决策树 决策树(Decision Tree)ID3算法 决策树(Decision Tree)C4.5算法 决策树(Decision Tree)CART算法 ...

  4. 3.1决策树理论--python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ   0. 机器学习中分类和预测算法的评估:   准确率 速度 强壮行 ...

  5. 【机器学习笔记之二】决策树的python实现

    本文结构: 是什么? 有什么算法? 数学原理? 编码实现算法? 1. 是什么? 简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问.这些问题是 ...

  6. python实现决策树

    1.决策树的简介 http://www.cnblogs.com/lufangtao/archive/2013/05/30/3103588.html 2.决策是实现的伪代码 “读入训练数据” “找出每个 ...

  7. 决策树ID3算法--python实现

    参考: 统计学习方法>第五章决策树]   http://pan.baidu.com/s/1hrTscza 决策树的python实现     有完整程序     决策树(ID3.C4.5.CART ...

  8. Python 和 R 数据分析/挖掘工具互查

    如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索 ...

  9. Python 数据挖掘 工具包整理

    连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracle cx_Oracle ROracle MongoDB pymo ...

随机推荐

  1. 走进AngularJs(二) ng模板中常用指令的使用方式

    通过使用模板,我们可以把model和controller中的数据组装起来呈现给浏览器,还可以通过数据绑定,实时更新视图,让我们的页面变成动态的.ng的模板真是让我爱不释手.学习ng道路还很漫长,从模板 ...

  2. JS:offsetWidth\offsetleft 等图文解释

        网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见区域宽: document.body.of ...

  3. Apache 80无法启动

    netstat -abno后查看,经过查找为pid=4的system进程,因为是系统进程,也无法结束它,经查SQL Server ReportingServices (SQLEXPRESS) 服务占用 ...

  4. 5G为何采纳华为力挺的Polar码?一个通信工程师的大实话

    Polar码被采纳为5G eMBB场景的控制信道编码,这两天连续被这条消息刷屏,连吃瓜群众都直呼好爽. 然而,随着媒体报道的持续发酵,真相在口口相传中变了形,不乏夸大不实之嫌,小编终于坐不住了,也想吐 ...

  5. 运维请注意:”非常危险“的Linux命令大全

    Linux命令是一种很有趣且有用的东西,但在你不知道会带来什么后果的时候,它又会显得非常危险.所以,在输入某些命令前,请多多检查再敲回车. rm –rf rm –rf是删除文件夹和里面附带内容的一种最 ...

  6. 关于背景图相对父容器垂直居中问题 —— vertical-align 和 line-height 之间的区别

       html css <div class="register-wrapper"> <div class="register"> &l ...

  7. eclipse中SSH三大框架环境搭建<二>

    通过上一篇博客我们可以轻松搭建strtus2的环境,接下来由我来继续介绍spring的环境搭建以及spring注入的简单使用 相关链接:eclipse中SSH三大k框架环境搭建<一> ec ...

  8. windows 7 docker oralce安装和使用

    7. oracle数据库的安装 7.1 下载镜像 查询:Docker search Oracle 下载: docker pull wnameless/oracle-xe-11g 如果不能下载,有可能是 ...

  9. Solr学习总结(四)Solr查询参数

    今天还是不会涉及到.Net和数据库操作,主要还是总结Solr 的查询参数,还是那句话,只有先明白了solr的基础内容和查询语法,后续学习solr 的C#和数据库操作,都是水到渠成的事.这里先列出sol ...

  10. 浅谈JavaScript中的defer,async

    引言 开始重读<<JavaScript高级程序设计>>一书,看到关于JavaScript中关于defer.async的部分.网上查询了点资料,觉得蛮好的.现在总结下. defe ...