Most Distant Point from the Sea
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5153   Accepted: 2326   Special Judge

Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
   
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553

Source


题意:

给出一个形状为凸包的岛屿,求岛上离海(即凸包外)最远的点离海的距离有多远

二分多远,然后把凸包缩小这么远,看看此时半平面交有没有交集


问题转换一下也可以变成在凸包内放一个最大的圆
 
注意这时候不是让你求每个点到了哪里,而是每条边到了哪里,所以用一个Line数组保存每条边到了哪里
求法向量时不要除长度了,等乘上mid后再除原长度,否则有精度问题
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const double INF=1e4+;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
void print(){printf("%lf %lf\n",x,y);}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double Len(Vector a){return sqrt(Dot(a,a));}
Vector Normal(Vector a){
return Vector(-a.y,a.x);//counterClockwise
}
struct Line{
Point s,t;
Line(){}
Line(Point a,Point b):s(a),t(b){}
};
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w));
}
Point LI(Line a,Line b){
Vector v=a.s-b.s,v1=a.t-a.s,v2=b.t-b.s;
double t=Cross(v2,v)/Cross(v1,v2);
return a.s+v1*t;
} void iniPolygon(Point p[],int &n,double inf){
n=;
p[++n]=Point(inf,inf);
p[++n]=Point(inf,-inf);
p[++n]=Point(-inf,-inf);
p[++n]=Point(-inf,inf);
}
Point t[N];int tn;
void CutPolygon(Point p[],int &n,Point a,Point b){//get the left of a->b
tn=;
Point c,d;
for(int i=;i<=n;i++){
c=p[i],d=p[i%n+];
if(sgn(Cross(b-a,c-a))>=) t[++tn]=c;
if(isLSI(Line(a,b),Line(c,d)))
t[++tn]=LI(Line(a,b),Line(c,d));
}
n=tn;for(int i=;i<=n;i++) p[i]=t[i];
}
int n,m;
Point p[N],q[N];
Line L[N];
void ChangePolygon(Point p[],int n,double x){
p[n+]=p[];
for(int i=;i<=n;i++){
Vector v=Normal(p[i+]-p[i])*x/Len(p[i+]-p[i]);
L[i]=Line(p[i]+v,p[i+]+v);
}
}
void solve(){
double l=,r=,e=1e-;
while(r-l>e){
double mid=(l+r)/;//printf("hi %lf %lf %lf\n",l,r,mid);
ChangePolygon(p,n,mid);
iniPolygon(q,m,INF);
for(int i=;i<=n;i++) CutPolygon(q,m,L[i].s,L[i].t);
if(m) l=mid;
else r=mid;
}
printf("%lf\n",l);
} int main(int argc, const char * argv[]){
while(true){
n=read();if(n==) break;
for(int i=;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
solve();
}
}
 

POJ 3525 Most Distant Point from the Sea [半平面交 二分]的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  8. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  9. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

随机推荐

  1. FineReport父子格实现动态参数注入

    "深入学习FineReport后发现其功能及其强大,之前使用存储过程实现的报表完全可以使用FineReport本身的功能实现. 当你需要的表名,查询条件等均未知的时候,使用"动态参 ...

  2. JAVA开发中遇到的异常总结

    最常见的五种异常:必会,面试题: 算术异常类:ArithmeticExecption 空指针异常类:NullPointerException 类型强制转换异常:ClassCastException 数 ...

  3. 再起航,我的学习笔记之JavaScript设计模式29(节流模式)

    节流模式 概念介绍 节流模式(Throttler): 对重复的业务逻辑进行节流控制,执行最后一次操作并取消其他操作,以提高性能. 优化滚动事件 有的时候我们再为滚动条添加动画的时候,会发现滚动条不停的 ...

  4. [国嵌笔记][010][TFTP与NFS服务器配置]

    交叉开发 嵌入式软件产生的平台称为宿主机,运行嵌入式软件的平台称为目标机 宿主机一般通过串口.网络.USB.JTAG等方式将软件下载到目标机 网络下载 一般有TFTP和NFS两种方式 tftp服务器 ...

  5. grunt 插件开发注意事项

    grunt的插件机制 task.loadNpmTasks = function(name) { var root = path.resolve('node_modules'); var tasksdi ...

  6. PHP批量去除bom头代码的小工具

    在 aitecms 群里有网友抱怨了好几天说本地的验证码一直无法显示,后来听说解决了,问其如何解决的,说是去除了文件 bom 就好了.后来百度到一篇文章也说 dedecms 的验证码不能显示,某次解决 ...

  7. OKMX6Q libx264交叉编译

    最开始使用的是最新版x264-snapshot-20171119-2245 配置使用: ./configure --host=arm-linux --cross-prefix=arm-linux- - ...

  8. 分享整理的免费API接口

    天气接口 聚合数据: http://op.juhe.cn/onebox/weather/query 用例 官方文档 来源:weather.com 百度接口: http://api.map.baidu. ...

  9. Java 中判断类和实例之间的关系

    判断类与实例的关系有以下三种方式 1.instanceof关键字,用来判断对象是否是类的实例 (对象 => 类 )   2.isAssignableFrom,用来判断类型间是否存在派生关系 (类 ...

  10. Lucene.net(4.8.0) 学习问题记录四: IndexWriter 索引的优化以及思考

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...