Tree

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 920    Accepted Submission(s): 388

Problem Description
You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with an integer as the weight.

Your task is to deal with M operations of 4 types:

1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still constitutes a tree after adding the new edge.

2.Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting node a and b (including node a and b) to a particular value x.

3.Given two nodes a and b in the tree, increase the weights of all the nodes on the path connecting node a and b (including node a and b) by a particular value d.

4.Given two nodes a and b in the tree, compute the second largest weight on the path connecting node a and b (including node a and b), and the number of times this weight occurs on the path. Note that here we need the strict second largest weight. For instance, the strict second largest weight of {3, 5, 2, 5, 3} is 3.

 
Input
The first line contains an integer T (T<=3), which means there are T test cases in the input.

For each test case, the first line contains two integers N and M (N, M<=10^5). The second line contains N integers, and the i-th integer is the weight of the i-th node in the tree (their absolute values are not larger than 10^4).

In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge connecting node a and b.

The next M lines describe the operations you have to deal with. In each line the first integer is c (1<=c<=4), which indicates the type of operation.

If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c.
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c.
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c.
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.

All these parameters have the same meaning as described in problem description.

 
Output
For each test case, first output "Case #x:"" (x means case ID) in a separate line.

For each query operation, output two values: the second largest weight and the number of times it occurs. If the weights of nodes on that path are all the same, just output "ALL SAME" (without quotes).

 
Sample Input
2
3 2
1 1 2
1 2
1 3
4 1 2
4 2 3
7 7
5 3 2 1 7 3 6
1 2
1 3
3 4
3 5
4 6
4 7
4 2 6
3 4 5 -1
4 5 7
1 3 4 2 4
4 3 6
2 3 6 5
4 3 6
 
Sample Output
Case #1:
ALL SAME
1 2
Case #2:
3 2
1 1
3 2
ALL SAME
/*
hdu 5002 (动态树lct) problem:
给你一棵树树,主要包含四个操作:
1 x y u v:断开x,y之间的边 连接上u,v
2 x y w:将x->y之间的点权全部置为w
3 x y w:将x->y之间的点权全部加上w
4 x y:查询x->y之间第二大的 solve:
只是需要维护下第二大值,其它直接套模板 hhh-2016-08-20 17:21:29
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson ch[0]
#define rson ch[1]
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 300100;
const int INF = 0x3f3f3f3f; struct Node* null;
struct Node
{
Node* ch[2] ;
Node* fa;
int Size ;
int mMax ;
int sMax ;
int max_num ;
int Max_num ;
int val ;
int add ;
int same ;
int rev;
void newnode(int v)
{
val = v ;
mMax = v ;
sMax = -INF ;
Max_num = 1 ;
max_num = 0 ;
Size = 1 ;
add = 0 ;
same = -INF ;
fa = ch[0] = ch[1] = null ;
rev = 0;
}
void update_rev()
{
if(this == null)
return ;
swap(ch[0],ch[1]);
rev ^= 1;
}
void update_add(int v)
{
if(this == null )return ;
add += v;
mMax += v,val += v;
if(sMax != -INF) sMax += v;
} void update_same(int v)
{
if(this == null) return ;
same = v;
add = 0,val = v,mMax = v;
sMax = -INF,Max_num = Size,max_num = 0;
}
void cal(int val,int num)
{
if ( val == -INF ) return ;
if ( val < sMax ) return ;
if ( val > mMax )
{
sMax = mMax ;
max_num = Max_num ;
mMax = val ;
Max_num = num ;
}
else if ( val == mMax )
{
Max_num += num ;
}
else if ( val > sMax )
{
sMax = val ;
max_num = num ;
}
else max_num += num ;
}
void push_up () {
Size = ch[0]->Size + 1 + ch[1]->Size ;
mMax = sMax = -INF ;
max_num = Max_num = 0 ;
cal ( val , 1 ) ;
cal ( ch[0]->mMax , ch[0]->Max_num ) ;
cal ( ch[0]->sMax , ch[0]->max_num ) ;
cal ( ch[1]->mMax , ch[1]->Max_num ) ;
cal ( ch[1]->sMax , ch[1]->max_num ) ;
} void push_down()
{
if(rev)
{
ch[0]->update_rev();
ch[1]->update_rev();
rev = 0;
}
if(same != -INF)
{
ch[0]->update_same(same);
ch[1]->update_same(same);
same = -INF;
}
if(add)
{
ch[0]->update_add(add);
ch[1]->update_add(add);
add = 0;
}
} void link_child ( Node* to , int d )
{
ch[d] = to;
to->fa = this ;
} int isroot()
{
return fa == null || this != fa->ch[0] && this != fa->ch[1] ;
}
void down()
{
if ( !isroot () ) fa->down () ;
push_down () ;
}
void Rotate ( int d )
{
Node* f = fa ;
Node* ff = fa->fa ;
f->link_child ( ch[d] , !d ) ;
if ( !f->isroot () )
{
if ( ff->ch[0] == f ) ff->link_child ( this , 0 ) ;
else ff->link_child ( this , 1 ) ;
}
else fa = ff ;
link_child (f,d) ;
f->push_up () ;
} void splay ()
{
down () ;
while ( !isroot () ) {
if ( fa->isroot () ) {
this == fa->ch[0] ? Rotate ( 1 ) : Rotate ( 0 ) ;
} else {
if ( fa == fa->fa->ch[0] ) {
this == fa->ch[0] ? fa->Rotate ( 1 ) : Rotate ( 0 ) ;
Rotate ( 1 ) ;
} else {
this == fa->ch[1] ? fa->Rotate ( 0 ) : Rotate ( 1 ) ;
Rotate ( 0 ) ;
}
}
}
push_up () ;
} void access()
{
Node* now = this ;
Node* x = null ;
while ( now != null )
{
now->splay () ;
now->link_child ( x , 1 ) ;
now->push_up () ;
x = now ;
now = now->fa ;
}
splay () ;
} void make_root()
{
access();
update_rev();
} void cut()
{
access();
ch[0]->fa = null;
ch[0] = null;
push_up();
}
Node* find_root ()
{
access () ;
Node* to = this ;
while ( to->ch[0] != null )
{
to->push_down () ;
to = to->ch[0] ;
}
return to ;
}
void cut(Node* to)
{
to->make_root();
cut();
} void link(Node* to)
{
to->make_root();
to->fa = this;
}
void make_same(Node* to,int val)
{
to->make_root();
access();
update_same(val);
}
void make_add(Node* to,int val)
{
to->make_root();
access();
update_add(val);
}
void query(Node* to)
{
to->make_root();
access(); if(!max_num)
printf("ALL SAME\n");
else
printf("%d %d\n",sMax,max_num);
}
};
Node memory_pool[maxn];
Node* now;
Node* node[maxn]; void Clear()
{
now = memory_pool;
now->newnode(-INF);
null = now ++;
null->Size = 0;
} int main()
{
int T,n,cas = 1,m;
int x,y,a,b,c;
int ob;
// freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
Clear();
scanf("%d%d",&n,&m);
printf("Case #%d:\n",cas++);
for(int i = 1; i <= n; i++)
{
scanf("%d",&x);
now->newnode(x);
node[i] = now++;
} for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
node[a]->link(node[b]); }
for(int i= 1; i <= m; i++)
{
scanf("%d",&ob);
if(ob == 1)
{
scanf("%d%d%d%d",&x,&y,&a,&b);
node[x]->cut(node[y]);
node[a]->link(node[b]);
}
else if(ob == 2)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_same(node[y],c);
}
else if(ob == 3)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_add(node[y],c);
}
else if(ob == 4)
{
scanf("%d%d",&x,&y);
node[x]->query(node[y]); }
}
}
return 0;
}

  

hdu 5002 (动态树lct)的更多相关文章

  1. hdu 5398 动态树LCT

    GCD Tree Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  2. hdu 5314 动态树

    Happy King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. HDU 4718 The LCIS on the Tree (动态树LCT)

    The LCIS on the Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  4. 动态树LCT小结

    最开始看动态树不知道找了多少资料,总感觉不能完全理解.但其实理解了就是那么一回事...动态树在某种意思上来说跟树链剖分很相似,都是为了解决序列问题,树链剖分由于树的形态是不变的,所以可以通过预处理节点 ...

  5. bzoj2049-洞穴勘测(动态树lct模板题)

    Description 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好 ...

  6. [模板] 动态树/LCT

    简介 LCT是一种数据结构, 可以维护树的动态加边, 删边, 维护链上信息(满足结合律), 单次操作时间复杂度 \(O(\log n)\).(不会证) 思想类似树链剖分, 因为splay可以换根, 用 ...

  7. 动态树LCT(Link-cut-tree)总结+模板题+各种题目

    一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val:  令x点的点权变为val Query x y:  计算x,y之间的唯一的最短路径的点 ...

  8. SPOJ OTOCI 动态树 LCT

    SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...

  9. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2843  Solved: 1519[Submi ...

随机推荐

  1. Linux下I/O多路转接之epoll(绝对经典)

    epoll 关于Linux下I/O多路转接之epoll函数,什么返回值,什么参数,我不想再多的解释,您不想移驾,我给你移来: http://blog.csdn.net/colder2008/artic ...

  2. Flask 扩展 自定义扩展

    创建一个为视图访问加日志的扩展Flask-Logging,并从中了解到写Flask扩展的规范. 创建工程 先创建一个工程,目录结构如下: flask-logging/ ├ LICENSE # 授权说明 ...

  3. div+css命名规则

    作为一个前端菜鸟,进公司的第一个项目就是中途从外包公司接过来的公司网站,在别人写过了的基础上接着写,命名什么的,简直不要太痛苦. 目前,这个网站已经完成,但是被后台人员指出命名不规范.有心想解释一两句 ...

  4. docker实践4

    我的docker学习笔记4-守护式容器   $docker run -i -t ubuntu /bin/bash $ctrl-p 或 ctrl-q # 转到后台   $docker ps $docke ...

  5. jquery下关于input和label的关于点击事件的坑

    待填坑: 法院费用结算页面的案件类型

  6. JSON(五)——同步请求中使用JSON格式字符串进行交互(不太常见的用法)

    在同步请求中使用JSON格式进行数据交互的场景并不多,同步请求是浏览器直接与服务器进行数据交互的大多是用jsp的标签jstl和el表达式对请求中的数据进行数据的渲染.我也是在一次开发中要从其它服务器提 ...

  7. word2vec初探(用python简单实现)

    为什么要用这个? 因为看论文和博客的时候很常见,不论是干嘛的,既然这么火,不妨试试. 如何安装 从网上爬数据下来 对数据进行过滤.分词 用word2vec进行近义词查找等操作 完整的工程传到了我的gi ...

  8. H5 仿ios select滚动选择器。框架。

    官网上描述的很详细,并且开源,轻量. 有兴趣的可以去尝试官网上的demo写的也很好,并且每个参数也解释的很详细. http://zhoushengfe.com/iosselect/website/in ...

  9. 关于tr069网管开发系列教程

    原创作品,转载请注明出处,严禁非法转载.如有错误,请留言! email:40879506@qq.com 声明:本系列涉及的开源程序代码学习和研究,严禁用于商业目的. 如有任何问题,欢迎和我交流.(企鹅 ...

  10. Hibernate(十六):Hibernate二级缓存

    Hibernate缓存 缓存(Cache):计算机领域非常通用的概念.它介于应用程序和永久性数据存储源(如磁盘上的文件或者数据库)之间,起作用是降低应用程序直接读取永久性数据存储源的频率,从而提高应用 ...