Tree

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 920    Accepted Submission(s): 388

Problem Description
You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with an integer as the weight.

Your task is to deal with M operations of 4 types:

1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still constitutes a tree after adding the new edge.

2.Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting node a and b (including node a and b) to a particular value x.

3.Given two nodes a and b in the tree, increase the weights of all the nodes on the path connecting node a and b (including node a and b) by a particular value d.

4.Given two nodes a and b in the tree, compute the second largest weight on the path connecting node a and b (including node a and b), and the number of times this weight occurs on the path. Note that here we need the strict second largest weight. For instance, the strict second largest weight of {3, 5, 2, 5, 3} is 3.

 
Input
The first line contains an integer T (T<=3), which means there are T test cases in the input.

For each test case, the first line contains two integers N and M (N, M<=10^5). The second line contains N integers, and the i-th integer is the weight of the i-th node in the tree (their absolute values are not larger than 10^4).

In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge connecting node a and b.

The next M lines describe the operations you have to deal with. In each line the first integer is c (1<=c<=4), which indicates the type of operation.

If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c.
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c.
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c.
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.

All these parameters have the same meaning as described in problem description.

 
Output
For each test case, first output "Case #x:"" (x means case ID) in a separate line.

For each query operation, output two values: the second largest weight and the number of times it occurs. If the weights of nodes on that path are all the same, just output "ALL SAME" (without quotes).

 
Sample Input
2
3 2
1 1 2
1 2
1 3
4 1 2
4 2 3
7 7
5 3 2 1 7 3 6
1 2
1 3
3 4
3 5
4 6
4 7
4 2 6
3 4 5 -1
4 5 7
1 3 4 2 4
4 3 6
2 3 6 5
4 3 6
 
Sample Output
Case #1:
ALL SAME
1 2
Case #2:
3 2
1 1
3 2
ALL SAME
/*
hdu 5002 (动态树lct) problem:
给你一棵树树,主要包含四个操作:
1 x y u v:断开x,y之间的边 连接上u,v
2 x y w:将x->y之间的点权全部置为w
3 x y w:将x->y之间的点权全部加上w
4 x y:查询x->y之间第二大的 solve:
只是需要维护下第二大值,其它直接套模板 hhh-2016-08-20 17:21:29
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson ch[0]
#define rson ch[1]
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 300100;
const int INF = 0x3f3f3f3f; struct Node* null;
struct Node
{
Node* ch[2] ;
Node* fa;
int Size ;
int mMax ;
int sMax ;
int max_num ;
int Max_num ;
int val ;
int add ;
int same ;
int rev;
void newnode(int v)
{
val = v ;
mMax = v ;
sMax = -INF ;
Max_num = 1 ;
max_num = 0 ;
Size = 1 ;
add = 0 ;
same = -INF ;
fa = ch[0] = ch[1] = null ;
rev = 0;
}
void update_rev()
{
if(this == null)
return ;
swap(ch[0],ch[1]);
rev ^= 1;
}
void update_add(int v)
{
if(this == null )return ;
add += v;
mMax += v,val += v;
if(sMax != -INF) sMax += v;
} void update_same(int v)
{
if(this == null) return ;
same = v;
add = 0,val = v,mMax = v;
sMax = -INF,Max_num = Size,max_num = 0;
}
void cal(int val,int num)
{
if ( val == -INF ) return ;
if ( val < sMax ) return ;
if ( val > mMax )
{
sMax = mMax ;
max_num = Max_num ;
mMax = val ;
Max_num = num ;
}
else if ( val == mMax )
{
Max_num += num ;
}
else if ( val > sMax )
{
sMax = val ;
max_num = num ;
}
else max_num += num ;
}
void push_up () {
Size = ch[0]->Size + 1 + ch[1]->Size ;
mMax = sMax = -INF ;
max_num = Max_num = 0 ;
cal ( val , 1 ) ;
cal ( ch[0]->mMax , ch[0]->Max_num ) ;
cal ( ch[0]->sMax , ch[0]->max_num ) ;
cal ( ch[1]->mMax , ch[1]->Max_num ) ;
cal ( ch[1]->sMax , ch[1]->max_num ) ;
} void push_down()
{
if(rev)
{
ch[0]->update_rev();
ch[1]->update_rev();
rev = 0;
}
if(same != -INF)
{
ch[0]->update_same(same);
ch[1]->update_same(same);
same = -INF;
}
if(add)
{
ch[0]->update_add(add);
ch[1]->update_add(add);
add = 0;
}
} void link_child ( Node* to , int d )
{
ch[d] = to;
to->fa = this ;
} int isroot()
{
return fa == null || this != fa->ch[0] && this != fa->ch[1] ;
}
void down()
{
if ( !isroot () ) fa->down () ;
push_down () ;
}
void Rotate ( int d )
{
Node* f = fa ;
Node* ff = fa->fa ;
f->link_child ( ch[d] , !d ) ;
if ( !f->isroot () )
{
if ( ff->ch[0] == f ) ff->link_child ( this , 0 ) ;
else ff->link_child ( this , 1 ) ;
}
else fa = ff ;
link_child (f,d) ;
f->push_up () ;
} void splay ()
{
down () ;
while ( !isroot () ) {
if ( fa->isroot () ) {
this == fa->ch[0] ? Rotate ( 1 ) : Rotate ( 0 ) ;
} else {
if ( fa == fa->fa->ch[0] ) {
this == fa->ch[0] ? fa->Rotate ( 1 ) : Rotate ( 0 ) ;
Rotate ( 1 ) ;
} else {
this == fa->ch[1] ? fa->Rotate ( 0 ) : Rotate ( 1 ) ;
Rotate ( 0 ) ;
}
}
}
push_up () ;
} void access()
{
Node* now = this ;
Node* x = null ;
while ( now != null )
{
now->splay () ;
now->link_child ( x , 1 ) ;
now->push_up () ;
x = now ;
now = now->fa ;
}
splay () ;
} void make_root()
{
access();
update_rev();
} void cut()
{
access();
ch[0]->fa = null;
ch[0] = null;
push_up();
}
Node* find_root ()
{
access () ;
Node* to = this ;
while ( to->ch[0] != null )
{
to->push_down () ;
to = to->ch[0] ;
}
return to ;
}
void cut(Node* to)
{
to->make_root();
cut();
} void link(Node* to)
{
to->make_root();
to->fa = this;
}
void make_same(Node* to,int val)
{
to->make_root();
access();
update_same(val);
}
void make_add(Node* to,int val)
{
to->make_root();
access();
update_add(val);
}
void query(Node* to)
{
to->make_root();
access(); if(!max_num)
printf("ALL SAME\n");
else
printf("%d %d\n",sMax,max_num);
}
};
Node memory_pool[maxn];
Node* now;
Node* node[maxn]; void Clear()
{
now = memory_pool;
now->newnode(-INF);
null = now ++;
null->Size = 0;
} int main()
{
int T,n,cas = 1,m;
int x,y,a,b,c;
int ob;
// freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
Clear();
scanf("%d%d",&n,&m);
printf("Case #%d:\n",cas++);
for(int i = 1; i <= n; i++)
{
scanf("%d",&x);
now->newnode(x);
node[i] = now++;
} for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
node[a]->link(node[b]); }
for(int i= 1; i <= m; i++)
{
scanf("%d",&ob);
if(ob == 1)
{
scanf("%d%d%d%d",&x,&y,&a,&b);
node[x]->cut(node[y]);
node[a]->link(node[b]);
}
else if(ob == 2)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_same(node[y],c);
}
else if(ob == 3)
{
scanf("%d%d%d",&x,&y,&c);
node[x]->make_add(node[y],c);
}
else if(ob == 4)
{
scanf("%d%d",&x,&y);
node[x]->query(node[y]); }
}
}
return 0;
}

  

hdu 5002 (动态树lct)的更多相关文章

  1. hdu 5398 动态树LCT

    GCD Tree Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  2. hdu 5314 动态树

    Happy King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. HDU 4718 The LCIS on the Tree (动态树LCT)

    The LCIS on the Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  4. 动态树LCT小结

    最开始看动态树不知道找了多少资料,总感觉不能完全理解.但其实理解了就是那么一回事...动态树在某种意思上来说跟树链剖分很相似,都是为了解决序列问题,树链剖分由于树的形态是不变的,所以可以通过预处理节点 ...

  5. bzoj2049-洞穴勘测(动态树lct模板题)

    Description 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好 ...

  6. [模板] 动态树/LCT

    简介 LCT是一种数据结构, 可以维护树的动态加边, 删边, 维护链上信息(满足结合律), 单次操作时间复杂度 \(O(\log n)\).(不会证) 思想类似树链剖分, 因为splay可以换根, 用 ...

  7. 动态树LCT(Link-cut-tree)总结+模板题+各种题目

    一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val:  令x点的点权变为val Query x y:  计算x,y之间的唯一的最短路径的点 ...

  8. SPOJ OTOCI 动态树 LCT

    SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...

  9. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2843  Solved: 1519[Submi ...

随机推荐

  1. Socket程序从windows移植到linux下需要注意的

    )头文件 windows下winsock.h或winsock2.h linux下netinet/in.h(大部分都在这儿),unistd.h(close函数在这儿),sys/socket.h(在in. ...

  2. 22.C++- 继承与组合,protected访问级别

    在C++里,通过继承和组合实现了代码复用,使得开发效率提高,并且能够通过代码看到事物的关系 组合比继承简单,所以在写代码时先考虑能否组合,再来考虑继承. 组合的特点 将其它类的对象作为当前类的成员使用 ...

  3. nyoj 孪生素数

    孪生素数问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 写一个程序,找出给出素数范围内的所有孪生素数的组数.一般来说,孪生素数就是指两个素数距离为2,近的不能再 ...

  4. 10-TypeScript中的接口

    接口是一种规约的约定,从接口继承的类必须实现接口的约定.在高级开发中,通常接口是用于实现各种设计模式的基础,没有接口,设计模式无从谈起. 定义接口: interface ILog{ recordlog ...

  5. Python 黑客相关电子资源和书籍推荐

    原创 2017-06-03 玄魂工作室 玄魂工作室 继续上一次的Python编程入门的资源推荐,本次为大家推荐的是Python网络安全相关的资源和书籍. 在去年的双11送书的时候,其实送过几本Pyth ...

  6. Eclipse在线更新慢

    一.去掉不必要的更新 打开Windows-Preferences -> Install/Update –> Available Software Sites,将不需要的更新停用 二.关闭自 ...

  7. hadoop2.6.0实践:A01 问题处理 DEPRECATED: Use of this script to execute hdfs command is deprecated.

    [hadoop@hadoop-master data]$ hadoop dfs -ls /DEPRECATED: Use of this script to execute hdfs command ...

  8. 新概念英语(1-119)who call out to the thieves in the dark?

    who call out to the thieves in the dark? A true story Do you like stories? I want to tell you a true ...

  9. OAuth2.0学习(1-4)授权方式1-授权码模式(authorization code)

    参与者列表: (1) Third-party application:第三方应用程序,又称客户端(client),如:"云冲印".社交应用. (2)HTTP service:HTT ...

  10. Android WebView那些坑之上传文件

    最近公司项目需要在WebView上调用手机系统相册来上传图片,开发过程中发现在很多机器上无法正常唤起系统相册来选择图片. 解决问题之前我们先来说说WebView上传文件的逻辑:当我们在Web页面上点击 ...