Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge
Submit: 485  Solved: 174
[Submit][Status][Discuss]

Description

给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k]

Input

输入k n(n<2000)和一个n*n的地图

Output

输出矩形的左上和右下的列-行坐标或NIE

Sample Input

inputdata1
4 3
1 1 1
1 9 1
1 1 1
inputdata2
8 4
1 2 1 3
25 1 2 1
4 20 3 3
3 30 12 2

Sample Output

outputdata1
NIE
outputdata2
2 1 4 2

HINT

1<=k<=10^9 每个价格都是不大于2*10^9的非负整数

Source

感谢vfleaking提供SPJ

首先可以特判是否有单个元素满足条件,如果没有就说明元素都是<k或>2k的

>2k的肯定不能选,对于<k的元素,我们将其染色为1    >2k染色为0

现在要做的就是找到颜色全为1的极大子矩阵,判断它其中是否有满足条件的矩阵

如果一个矩阵>=k那么它一定会有一个子矩阵满足条件,可以证明:

如果整个矩阵和<=2k直接输出,剩下的情况都是矩阵和>2k,一直缩小矩阵直到矩阵和<=2k

假设去掉第一行后,矩阵权值和>=k ,去掉第一行继续处理矩阵

假设去掉第一行后,矩阵权值和<k  那么由于矩阵和>2k,第一行肯定是>k的,直接处理第一行

当只有一行时还>2k直接缩减元素

代码调不出来了。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 2005
#define ll long long
using namespace std;
int n,m,l[N][N],a[N][N],r[N][N],h[N][N];ll sum[N][N];
ll calc(int x1,int y1,int x2,int y2)
{return sum[x2][y2]+sum[x1-][y1-]-sum[x1-][y2]-sum[x2][y1-];}
void print(int x1,int y1,int x2,int y2){
if(calc(x1,y1,x2,y2)>*m){
if(x1==x2)y2--;
else if(calc(x1+,y1,x2,y2)>=m)x1++;
else x2--;
}
printf("%d %d %d %d\n",y1,x1,y2,x2);
exit();
} int main(){
//freopen("/home/noilinux/Desktop/data.in","r",stdin);
//freopen("/home/noilinux/Desktop/wa.out","w",stdout);
scanf("%d%d",&m,&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+a[i][j];
if(a[i][j]>=m&&a[i][j]<=m*){
printf("%d %d %d %d\n",j,i,j,i);
return ;
}
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[i][j]<m)l[i][j]=l[i][j-]+;
else l[i][j]=;
for(int i=;i<=n;i++)
for(int j=n;j>=;j--)
if(a[i][j]<m)r[i][j]=r[i][j+]+;
else r[i][j]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[i][j]<m)h[i][j]=h[i-][j]+;
else h[i][j]=; for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(a[i][j]>*m)continue;
if(h[i][j]>){
l[i][j]=min(l[i-][j],l[i][j]);
r[i][j]=min(r[i-][j],r[i][j]);
}
int x1=i-h[i][j]+,x2=i;
int y1=j-l[i][j]+,y2=j+r[i][j]-;
if(calc(x1,y1,x2,y2)>=m)print(x1,y1,x2,y2);
}
puts("NIE");
}

bzoj1127[POI2008]KUP 悬线法的更多相关文章

  1. 【BZOJ-1127】KUP 悬线法 + 贪心

    1127: [POI2008]KUP Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 317  Solved: 11 ...

  2. BZOJ1127 POI2008KUP(悬线法)

    首先显然地,如果某个格子的权值超过2k,其一定不在答案之中:如果在[k,2k]中,其自身就可以作为答案.那么现在我们只需要考虑所选权值都小于k的情况. 可以发现一个结论:若存在一个权值都小于k的矩阵其 ...

  3. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  4. BZOJ_3039_玉蟾宫_(动态规划+悬线法)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3039 n*m的矩阵由R和F组成,求全是F的子矩阵的大小的三倍. 分析 悬线法: 浅谈用极大化思 ...

  5. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  6. BZOJ 3039: 玉蟾宫( 悬线法 )

    最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...

  7. [POJ1964]City Game (悬线法)

    题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...

  8. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  9. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

随机推荐

  1. Java语言基础组成

    写完才发现,这个博客不提供目录这个功能,真是想骂爹了...... 目录 关键字 标识符 注释 常量和变量 运算符 语句 函数 数组 1.关键字 描述:刚刚开始学这个的时候,真是傻傻分不清楚,不过没关系 ...

  2. 07-TypeScript的For循环

    在传统的JavaScript中,关于循环,可以有两种方式,一种是forEach,一种是for. forEach的用法如下: var sarr=[1,2,3,4]; sarr.desc="he ...

  3. Pandas速查手册中文版

    本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...

  4. Linux入门(1)_VMware和系统分区和系统安装和远程登陆管理

    1 VMware的安装和使用 注意有 快照 和 克隆 的功能. 快照相当于建立一个 系统还原点, 可以随时恢复到原来状态. 克隆功能可以复制一个和当前一样的系统,并可以选择链接安装,只使用很少的空间就 ...

  5. 谈谈ASP.NET Core中的ResponseCaching

    前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...

  6. 常用的汇编指令 movs stos

    movsb   把寄存机esi所存的地址的数据以字节复制到edi movsw  把寄存机esi所存的地址的数据以word复制到edi movsd   把寄存机esi所存的地址的数据以dword复制到e ...

  7. Linq 巧用 Max,Sum

    IList<, , , , , }; var sum1 = intList.Sum(s => { == ) { return s; } ; }); Console.WriteLine(&q ...

  8. PHP7链接MySQL

    1 <?php $mysqli = new mysqli("localhost", "root", "123"); if($mysql ...

  9. Java设计模式(八)Proxy代理模式

    一.场景描述 代理在生活中并不少见,租房子需要找中介,打官司需要找律师,很多事情我们需要找专业人士代理我们做,另一方面,中介和律师也代理了房东.法律程序与我们打交道. 当然,设计模式中的代理与广义的代 ...

  10. Java 高级开发必修知识---反射

    Class类的使用 1) 在面向对象的世界里,万事万物皆对象 A. Java语言中,普通数据类型,静态成员不是对象,其他皆对象 B. 每一个类也是对象 C. 类是java.lang.Class类的实例 ...