bzoj1127[POI2008]KUP 悬线法
Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge
Submit: 485 Solved: 174
[Submit][Status][Discuss]
Description
给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k]
Input
输入k n(n<2000)和一个n*n的地图
Output
输出矩形的左上和右下的列-行坐标或NIE
Sample Input
4 3
1 1 1
1 9 1
1 1 1
inputdata2
8 4
1 2 1 3
25 1 2 1
4 20 3 3
3 30 12 2
Sample Output
NIE
outputdata2
2 1 4 2
HINT
1<=k<=10^9 每个价格都是不大于2*10^9的非负整数
Source
首先可以特判是否有单个元素满足条件,如果没有就说明元素都是<k或>2k的
>2k的肯定不能选,对于<k的元素,我们将其染色为1 >2k染色为0
现在要做的就是找到颜色全为1的极大子矩阵,判断它其中是否有满足条件的矩阵
如果一个矩阵>=k那么它一定会有一个子矩阵满足条件,可以证明:
如果整个矩阵和<=2k直接输出,剩下的情况都是矩阵和>2k,一直缩小矩阵直到矩阵和<=2k
假设去掉第一行后,矩阵权值和>=k ,去掉第一行继续处理矩阵
假设去掉第一行后,矩阵权值和<k 那么由于矩阵和>2k,第一行肯定是>k的,直接处理第一行
当只有一行时还>2k直接缩减元素
代码调不出来了。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 2005
#define ll long long
using namespace std;
int n,m,l[N][N],a[N][N],r[N][N],h[N][N];ll sum[N][N];
ll calc(int x1,int y1,int x2,int y2)
{return sum[x2][y2]+sum[x1-][y1-]-sum[x1-][y2]-sum[x2][y1-];}
void print(int x1,int y1,int x2,int y2){
if(calc(x1,y1,x2,y2)>*m){
if(x1==x2)y2--;
else if(calc(x1+,y1,x2,y2)>=m)x1++;
else x2--;
}
printf("%d %d %d %d\n",y1,x1,y2,x2);
exit();
} int main(){
//freopen("/home/noilinux/Desktop/data.in","r",stdin);
//freopen("/home/noilinux/Desktop/wa.out","w",stdout);
scanf("%d%d",&m,&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
scanf("%d",&a[i][j]);
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+a[i][j];
if(a[i][j]>=m&&a[i][j]<=m*){
printf("%d %d %d %d\n",j,i,j,i);
return ;
}
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[i][j]<m)l[i][j]=l[i][j-]+;
else l[i][j]=;
for(int i=;i<=n;i++)
for(int j=n;j>=;j--)
if(a[i][j]<m)r[i][j]=r[i][j+]+;
else r[i][j]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[i][j]<m)h[i][j]=h[i-][j]+;
else h[i][j]=; for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(a[i][j]>*m)continue;
if(h[i][j]>){
l[i][j]=min(l[i-][j],l[i][j]);
r[i][j]=min(r[i-][j],r[i][j]);
}
int x1=i-h[i][j]+,x2=i;
int y1=j-l[i][j]+,y2=j+r[i][j]-;
if(calc(x1,y1,x2,y2)>=m)print(x1,y1,x2,y2);
}
puts("NIE");
}
bzoj1127[POI2008]KUP 悬线法的更多相关文章
- 【BZOJ-1127】KUP 悬线法 + 贪心
1127: [POI2008]KUP Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 317 Solved: 11 ...
- BZOJ1127 POI2008KUP(悬线法)
首先显然地,如果某个格子的权值超过2k,其一定不在答案之中:如果在[k,2k]中,其自身就可以作为答案.那么现在我们只需要考虑所选权值都小于k的情况. 可以发现一个结论:若存在一个权值都小于k的矩阵其 ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- BZOJ_3039_玉蟾宫_(动态规划+悬线法)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3039 n*m的矩阵由R和F组成,求全是F的子矩阵的大小的三倍. 分析 悬线法: 浅谈用极大化思 ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- BZOJ 3039: 玉蟾宫( 悬线法 )
最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...
- [POJ1964]City Game (悬线法)
题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...
- [P1169] 棋盘制作 &悬线法学习笔记
学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...
- P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
随机推荐
- 201421123042 《Java程序设计》第11周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...
- jQuery 文档操作之prepend() 和prependTo()方法.
//prepend() $("#btnpre").click(function(){ //该方法在被选元素的开头(仍位于内部)插入指定内容. $("div"). ...
- 2018年东北农业大学春季校赛-wyh的吃鸡
BFS: 1. 从起点开始BFS,遇到X点则return: 2. vis[px][py][0]代表经过pxpy这点前还没有找到车: vis[px][py][1]代表经过pxpy这点前已经找到车: 3. ...
- linux作为服务器,利用top命令查看服务进程的耗用情况
top命令查看进程服务如下: 其中shift+m可以按照内存的消耗进行排序,shift+p是按照cpu的消耗进程,排序,其中对cpu的消耗是一定时间,谁占用的时间越长消耗越大, 还有按空格键,会刷新一 ...
- 第二章 Idea搭建maven
第二章 Idea搭建maven 1.配置Maven的环境变量 a.首先我们去maven官网下载Maven程序,解压到安装目录,如图所示: b.配置M2_HOME(MAVEN_HOME)的环境变量,然后 ...
- c 语言的基本语法
1,c的令牌(Tokens) printf("Hello, World! \n"); 这五个令牌是: printf ( "Hello, World! \n" ) ...
- Web Api 接收图片
public async Task<HttpResponseMessage> Upload() { if (!Request.Content.IsMimeMultipartContent( ...
- crontab的mysqldump备份任务未能完全正确执行的故障处理
crontab是每个运维一线人员必须掌握的技术,熟练运用crontab可以自动帮助我们执行重复性的工作,提高运维的工作效率.它就像一个闹钟,在特定的时间,准时响应并执行相应的任务.如果你的工作经常与L ...
- matlab 对tif数据高程图的处理分析
temp=z(101:2200,101:2200) 根据图像属性可得此为2300*2300的tif图像,由于需要将其划分为9宫格,所以begin点设置为101,end点设置为2200,temp转化为可 ...
- C#Json转DataTable
需求:有一个log文件,需要整理成Excel,日志文件里面的数据都是json字符串 思路是,把Json字符串转换成DataTable,然后导出到Excel 在网上找了一些资料,整理了以下三种类型的Js ...