●BZOJ 4176 Lucas的数论
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4176
题解:
莫比乌斯反演,杜教筛
首先有这么一个结论:
令d(n)表示n的约数的个数(就是题目中的f(n)),则有
$$d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$$
●BZOJ 3994 [SDOI2015]约数个数和也用到了这个东西。
那么就下来接直接进行求ANS的式子的推导:
$$\begin{aligned}
ANS&=\sum_{n=1}^{N}\sum_{m=1}^{N}d(nm)\\
&=\sum_{n=1}^{N}\sum_{m=1}^{N}\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]\\
&=\sum_{n=1}^{N}\sum_{m=1}^{N}\sum_{i|n}\sum_{j|m}\sum_{d|gcd(i,j)}\mu(d)\\
&=\sum_{d=1}^{N}\mu(d)\sum_{d|i}\sum_{d|j}\sum_{i|n,n\leq N}\sum_{j|m,m\leq N} 1\\
&=\sum_{d=1}^{N}\mu(d)(\sum_{d|i}\lfloor \frac{N}{i} \rfloor)^2\\
&=\sum_{d=1}^{N}\mu(d)(\sum_{i=1}^{\lfloor \frac{N}{d} \rfloor}\lfloor \frac{N}{id} \rfloor)^2\end{aligned}$$
令$$f(n)=\sum_{i=1}^{n}\lfloor \frac{n}{i} \rfloor$$
则$$ANS=\sum_{d=1}^{N}\mu(d)f(\lfloor \frac{N}{d} \rfloor)^2$$
这个求ANS的式子是可以分块+杜教筛(求每块$\mu$的和)做的,
同时求f也可以分块求,
即这是一个块套块。。。
代码:
#include<bits/stdc++.h>
#define DJM /*5623413*/ 1000000
using namespace std;
const int mod=1000000007;
struct Hash_Table{
#define Hmod 1425367
int org[DJM],val[DJM],nxt[DJM],head[Hmod],hnt;
Hash_Table(){hnt=1;}
void Push(int x,int v){
static int u; u=x%Hmod;
org[hnt]=x; val[hnt]=v; nxt[hnt]=head[u]; head[u]=hnt++;
}
int Find(int x){
static int u; u=x%Hmod;
for(int i=head[u];i;i=nxt[i])
if(org[i]==x) return val[i];
return -1;
}
}H;
int pmu[DJM+50],mu[DJM+50];
void Sieve(){
static bool np[DJM+50];
static int prime[DJM+50],pnt;
mu[1]=1;
for(int i=2;i<=DJM;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=DJM/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for(int i=1;i<=DJM;i++)
pmu[i]=(1ll*mod+pmu[i-1]+mu[i])%mod;
}
int f(int n){
int ret=0;
for(int i=1,last;i<=n;i=last+1){
last=n/(n/i);
ret=(1ll*ret+1ll*(last-i+1)*(n/i))%mod;
}
return ret;
}
int DJ_pmu(int n){
if(n<=DJM) return pmu[n];
if(H.Find(n)!=-1) return H.Find(n);
int ret=1;
for(int i=2,last;i<=n;i=last+1){
last=n/(n/i);
ret=(1ll*ret+mod-1ll*(last-i+1)*DJ_pmu(n/i)%mod)%mod;
}
H.Push(n,ret);
return ret;
}
int main(){
Sieve(); int n,ans=0;
scanf("%d",&n);
for(int d=1,tmp,last;d<=n;d=last+1){
last=n/(n/d); tmp=f(n/d);
tmp=1ll*tmp*tmp%mod;
ans=(1ll*ans+(1ll*DJ_pmu(last)-DJ_pmu(d-1)+mod)%mod*tmp%mod)%mod;
}
printf("%d\n",ans);
return 0;
}
●BZOJ 4176 Lucas的数论的更多相关文章
- bzoj 4176 Lucas的数论
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- 【刷题】BZOJ 4176 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...
- bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...
- Lucas的数论题解
Lucas的数论 reference 题目在这里> < Pre 数论分块 默认向下取整时. 形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\righ ...
随机推荐
- 数据结构——线性表——队列(queue)
队列也是一种特殊的线性表,它的特点是先入先出(FIFO,即first in first out).它的意思也很直观,想象一下排队买票,先排的人先买(插队是不对的,所以别去想).它也是很常用的数据结构, ...
- 20145237 《Java程序设计》第10周学习总结
20145237 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 •网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来. •java.n ...
- C#中的函数式编程:递归与纯函数(二)
在序言中,我们提到函数式编程的两大特征:无副作用.函数是第一公民.现在,我们先来深入第一个特征:无副作用. 无副作用是通过引用透明(Referential transparency)来定义的.如果一个 ...
- Golang学习--开篇
最近开始接收一个新项目,是使用Golang写的,需要重新捡起Golang来,于是就有了这个系列博客. Golang的环境配置,我就不说了,让我们直接开始. Golang官网:https://golan ...
- lua保存table到文件并从文件解析成table
require("json") result = { ["ip"]="192.168.0.177", ["date"]= ...
- Mybatis框架入门
Mybaits框架 一.什么是Mybatis MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了googl ...
- c语言中宏定义和常量定义的区别
他们有共同的好处就是"一改全改,避免输入错误"哪两者有不同之处吗?有的. 主要区别就在于,宏定义是在编译之前进行的,而const是在编译阶段处理的 宏定义不占用内存单元而const ...
- istio入门(02)istio的架构和概念
Istio从逻辑上可以分为数据平面和控制平面: 数据平面主要由一系列的智能代理(Envoy)组成,管理微服务之间的网络通信 控制平面负责管理和配置这些智能代理,并动态执行策略 主要由以下组件构成 En ...
- hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(2)安装hadoop
一.依赖安装 安装JDK 二.文件准备 hadoop-2.7.3.tar.gz 2.2 下载地址 http://hadoop.apache.org/releases.html 三.工具准备 3.1 X ...
- 基于python的统计公报关键数据爬取 update
由于之前存在的难以辨别市本级,全市相关数据的原因,经过考虑采用 把含有关键词的字段全部提取进行人工辨别的方法 在其余部分不改变的情况下,更改test部分 def test(real_Title,rea ...