Problem Statement

Seisu-ya, a store specializing in non-negative integers, sells N non-negative integers. The i-th integer is Ai and has a utility of Bi. There may be multiple equal integers with different utilities.

Takahashi will buy some integers in this store. He can buy a combination of integers whose bitwise OR is less than or equal to K. He wants the sum of utilities of purchased integers to be as large as possible.

Find the maximum possible sum of utilities of purchased integers.

解题报告:

这题从物品下手不好做,可以考虑从k下手,所以我们枚举最后的答案,一定是小于等于k的,所以直接枚举比k小的集合,这样的集合是很多的,但很多可以归为一类,我们这样归类:首先一个小于等于k的数一定是前面部分和k相同或更小,然后某一位k是1,而答案是0,所以枚举这一位作为分类的依据,只要是答案子集的都计入贡献,取Max即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=100005;
int n,m;
struct node{
int x,y;
}a[N];
ll ans=0;
void work()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
}
ll tot=0,li=0;m++;
for(int i=30;i>=0;i--){
if(m&(1<<i)){
li^=(1<<i);tot=0;
for(int j=1;j<=n;j++)
if((a[j].x&li)==0)tot+=a[j].y;
ans=Max(tot,ans);
li^=(1<<i);
}
else li^=(1<<i);
}
printf("%lld\n",ans);
} int main()
{
work();
return 0;
}

Tenka1 Programmer Contest D - IntegerotS的更多相关文章

  1. Atcoder Tenka1 Programmer Contest D: IntegerotS 【思维题,位运算】

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_d 给定N,K和A1...AN,B1...BN,选取若干个Ai使它们的或运算值小于等于K ...

  2. 【AtCoder】Tenka1 Programmer Contest 2019

    Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...

  3. Tenka1 Programmer Contest D - Crossing

    链接 Tenka1 Programmer Contest D - Crossing 给定\(n\),要求构造\(k\)个集合\({S_k}\),使得\(1\)到\(n\)中每个元素均在集合中出现两次, ...

  4. Tenka1 Programmer Contest C - Align

    链接 Tenka1 Programmer Contest C - Align 给定一个序列,要求重新排列最大化\(\sum_{i=2}^{i=n} |a_i-a_{i-1}|\),\(n\leq 10 ...

  5. 【AtCoder】Tenka1 Programmer Contest

    C - 4/N 列出个方程枚举解一下 #include <bits/stdc++.h> #define fi first #define se second #define pii pai ...

  6. Atcoder Tenka1 Programmer Contest C C - 4/N

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_c 我怀疑我是不是智障.... 本来一直的想法是能不能构造出答案,把N按奇偶分,偶数好办 ...

  7. Tenka1 Programmer Contest 2019

    C:即要使前一部分为白色后一部分为黑色,枚举分割点前缀和计算答案取min即可. #include<bits/stdc++.h> using namespace std; #define l ...

  8. Atcoder Tenka1 Programmer Contest 2019

    C 签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然. #include<bits/stdc++.h> using namespace std; ; ]; char ...

  9. 【AtCoder】Tenka1 Programmer Contest(C - F)

    C - Align 考的时候,我大胆猜了结论,就是一小一大一小一大这么排 证明的话,由于我们总是要加上相邻的最大值而减去最小值,我们就让最大值都保持在前面 如果长度为奇数,要么就是大小大小大,要么是小 ...

随机推荐

  1. python实现维吉尼亚解密

    # -*-coding:UTF-8-*- from sys import stdout miwen = "KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXR ...

  2. 关于 Ubuntu Linux 16.04中文版的 root 权限及桌面登录问题

    新接触 Ubuntu 的朋友大多会因为安装中没有提示设置 root 密码而不太清楚是什么原因. 起初 Ubuntu 团队希望安装尽可能的简单. 不使用 root , 在安装期间的两个用户交互步骤可以省 ...

  3. SpringCloud的应用发布(四)vmvare+linux,网关代理

    一.配置方式 1.代理同一个Eureka中注册的服务 2.代理url 二.访问方式:get - list 1.直接访问应用 2.代理访问应用

  4. 详解Ajax请求(三)——jQuery对Ajax的实现及serialize()函数对于表单域控件参数提交的使用技巧

    原生的Ajax对于异步请求的实现并不好用,特别是不同的浏览器对于Ajax的实现并不完全相同,这就意味着你使用原生的Ajax做异步请求要兼顾浏览器的兼容性问题,对于java程序员来讲这是比较头疼的事情, ...

  5. 集智robot微信公众号开发笔记

    开发流程 公众号基本配置(首先得有公众平台账号) 在开发菜单的基本配置中填写好基本配置项 首先配置服务器地址.Token.和消息加密密钥(地址为开发者为微信验证留的接口.token可以随便填写,只要在 ...

  6. Error loading MySQLdb module: No module named 'MySQLdb'----------- django成功连接mysql数据库的方法

    在进行django学习过程中,尝试使用框架连接mysql数据库,启动服务器的时候经常遇到Error loading MySQLdb module: No module named 'MySQLdb' ...

  7. Extensions in UWP Community Toolkit - SurfaceDialTextbox

    概述 UWP Community Toolkit Extensions 中有一个为TextBox 提供的 SurfaceDial 扩展 - SurfaceDialTextbox,本篇我们结合代码详细讲 ...

  8. Modelsim的使用——复杂的仿真

    相对于简单的仿真,复杂的仿真是指由多个文件.甚至调用了IP核.使用tcl脚本进行的仿真.其实仿真步骤跟图形化的差不多,只不过每一步用脚本写好,然后再在软件里面run一下,主要过程就是: 1.准备好各种 ...

  9. C#使用Socket实现一个socket服务器与多个socket客户端通信

    在分布式调度系统中,如果要实现调度服务器与多台计算节点服务器之间通信,采用socket来实现是一种实现方式,当然我们也可以通过数据存储任务,子节点来完成任务,但是往往使用数据作为任务存储都需要定制开发 ...

  10. UVAlive-2554 Snakes & Ladders---BFS状态的存储

     题目链接: https://vjudge.net/problem/UVALive-2554 题目大意: 题目的大概意思是又N*N的棋盘,编号从1 到 N*N 棋盘中分布着蛇和梯子玩家在位置1处,   ...