0.交叉验证

  交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。

  交叉验证用在数据不是很充足的时候。比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型。如果样本大于一万条的话,我们一般随机的把数据分成三份,一份为训练集(Training Set),一份为验证集(Validation Set),最后一份为测试集(Test Set)。用训练集来训练模型,用验证集来评估模型预测的好坏和选择模型及其对应的参数。把最终得到的模型再用于测试集,最终决定使用哪个模型以及对应参数。

  根据切分的方法不同,交叉验证分为下面三种:   

  第一种是简单交叉验证,所谓的简单,是和其他交叉验证方法相对而言的。首先,我们随机的将样本数据分为两部分(比如: 70%的训练集,30%的测试集),然后用训练集来训练模型,在测试集上验证模型及参数。接着,我们再把样本打乱,重新选择训练集和测试集,继续训练数据和检验模型。最后我们选择损失函数评估最优的模型和参数。 

  第二种是S折交叉验证(S-Folder Cross Validation)。和第一种方法不同,S折交叉验证会把样本数据随机的分成S份,每次随机的选择S-1份作为训练集,剩下的1份做测试集。当这一轮完成后,重新随机选择S-1份来训练数据。若干轮(小于S)之后,选择损失函数评估最优的模型和参数。

  第三种是留一交叉验证(Leave-one-out Cross Validation),它是第二种情况的特例,此时S等于样本数N,这样对于N个样本,每次选择N-1个样本来训练数据,留一个样本来验证模型预测的好坏。此方法主要用于样本量非常少的情况,比如对于普通适中问题,N小于50时,我一般采用留一交叉验证。

1.模型调参利器GridSearchCV(网格搜索)

  GridSearchCV能够通过给定的参数列表,自动的帮我们选择一个最优的参数,在数据集不大的情况下非常适合使用。函数的相关参数的含义如下:

    GridSearchCV(estimatorparam_gridscoring=Nonefit_params=Nonen_jobs=1iid=Truerefit=Truecv=Noneverbose=0pre_dispatch='2*n_jobs'error_score='raise'return_train_score=True)

Parameters:

  estimator:所使用的分类器,或者pipeline

  param_grid:值为字典或者列表,即需要最优化的参数的取值

  scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

  n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。

  pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次

  iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。

  cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。

  refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

  verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

Attributes:
  best_estimator_:效果最好的分类器

  best_score_:成员提供优化过程期间观察到的最好的评分

  best_params_:描述了已取得最佳结果的参数的组合

  best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。

Methods:

  decision_function:使用找到的参数最好的分类器调用decision_function。

  fit(Xy=Nonegroups=None**fit_params):训练

  get_params(deep=True):获取这个估计器的参数。

  predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)

  predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)

  predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)

  score(Xy=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。

  transform(X):调用最优分类器进行对X的转换。

  下面我们一岭回归为例,运用GridSearchCV进行调参工作:

 import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso, Ridge
from sklearn.model_selection import GridSearchCV if __name__ == "__main__":
# pandas读入
data = pd.read_csv('../data-set/Advertising.csv')
x = data[['TV', 'Radio', 'Newspaper']] y = data['Sales'] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1) #model = Lasso()
model = Ridge() alpha_can = np.logspace(-3, 2, 10)
lasso_model = GridSearchCV(model, param_grid={'alpha': alpha_can}, cv=5)
lasso_model.fit(x, y)
print('验证参数:\n', lasso_model.best_params_) y_hat = lasso_model.predict(np.array(x_test))
mse = np.average((y_hat - np.array(y_test)) ** 2) # Mean Squared Error
rmse = np.sqrt(mse) # Root Mean Squared Error
print(mse, rmse) t = np.arange(len(x_test))
plt.plot(t, y_test, 'r-', linewidth=2, label='Test')
plt.plot(t, y_hat, 'g-', linewidth=2, label='Predict')
plt.legend(loc='upper right')
plt.grid()
plt.show()

  在上述的代码中,np.logspace(-3, 2, 10)为返回10^-3到10^2的长度为默认10的列表,作为参数的可选值,lasso_model = GridSearchCV(model, param_grid={'alpha': alpha_can}, cv=5)中,param_grid自动参数alpha的参数列表,cv表示使用5折交叉验证。

运行结果如下:

欢迎关注我的公众号,不定期更新机器学习原理教程!

机器学习——交叉验证,GridSearchCV,岭回归的更多相关文章

  1. Numpy实现机器学习交叉验证的数据划分

    Numpy实现K折交叉验证的数据划分 本实例使用Numpy的数组切片语法,实现了K折交叉验证的数据划分 背景:K折交叉验证 为什么需要这个?在机器学习中,因为如下原因,使用K折交叉验证能更好评估模型效 ...

  2. 机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )

    案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表 ...

  3. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  4. 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归

    注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...

  5. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  6. GridSearchCV交叉验证

    代码实现(基于逻辑回归算法): # -*- coding: utf-8 -*- """ Created on Sat Sep 1 11:54:48 2018 @autho ...

  7. python机器学习sklearn 岭回归(Ridge、RidgeCV)

    1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量 ...

  8. 机器学习之五 正则化的线性回归-岭回归与Lasso回归

    机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基 ...

  9. 机器学习中的train valid test以及交叉验证

    转自 https://www.cnblogs.com/rainsoul/p/6373385.html 在以前的网络训练中,有关于验证集一直比较疑惑,在一些机器学习的教程中,都会提到,将数据集分为三部分 ...

随机推荐

  1. pymysql和 SQLAlchemy在python下的使用

    #!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine, Table, Column, In ...

  2. socketWriter.go

    package blog4go import ( "bytes" "fmt" "net" "sync" ) // Soc ...

  3. 「SDOI 2018」反回文串

    题目大意: 求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量. 题解: 这题是D1里最神的吧 考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串. 但是显然这样计算会算重. ...

  4. 【强连通分量】Bzoj1654 [Usaco2006 Jan]The Cow Prom 奶牛舞会

    Description 约翰的N(2≤N≤10000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别上鲜花,她们要表演圆舞.     只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的 ...

  5. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  6. BZOJ_2956_模积和_数学

    BZOJ_2956_模积和_数学 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数 ...

  7. IE不兼容ES6箭头函数的解决方法(在浏览器中使用)

    polyfill.js下载方法: npm install babel-polyfill --save 页面中引用"polyfill.js" 和 "browser.min. ...

  8. Visual Studio Code 中文界面设置

    Visual Studio Code 中文界面设置 昨天,想要试一下用 VS Code 写 Markdown 格式的博客,下载下来发现是英文界面: 按照我以前的经验应该会自动提示切换语言的,但是这次等 ...

  9. 一文读懂Asp.net core 依赖注入(Dependency injection)

    一.什么是依赖注入 首先在Asp.net core中是支持依赖注入软件设计模式,或者说依赖注入是asp.net core的核心: 依赖注入(DI)和控制反转(IOC)基本是一个意思,因为说起来谁都离不 ...

  10. 学习 JavaScript (四)核心概念:操作符

    JavaScript 的核心概念主要由语法.变量.数据类型.操作符.语句.函数组成,前面三个上一篇文章已经讲解完了.后面三个内容超级多,这篇文章主要讲解的是操作符. 操作符 什么叫做操作符? 这是一种 ...