0.交叉验证

  交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。

  交叉验证用在数据不是很充足的时候。比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型。如果样本大于一万条的话,我们一般随机的把数据分成三份,一份为训练集(Training Set),一份为验证集(Validation Set),最后一份为测试集(Test Set)。用训练集来训练模型,用验证集来评估模型预测的好坏和选择模型及其对应的参数。把最终得到的模型再用于测试集,最终决定使用哪个模型以及对应参数。

  根据切分的方法不同,交叉验证分为下面三种:   

  第一种是简单交叉验证,所谓的简单,是和其他交叉验证方法相对而言的。首先,我们随机的将样本数据分为两部分(比如: 70%的训练集,30%的测试集),然后用训练集来训练模型,在测试集上验证模型及参数。接着,我们再把样本打乱,重新选择训练集和测试集,继续训练数据和检验模型。最后我们选择损失函数评估最优的模型和参数。 

  第二种是S折交叉验证(S-Folder Cross Validation)。和第一种方法不同,S折交叉验证会把样本数据随机的分成S份,每次随机的选择S-1份作为训练集,剩下的1份做测试集。当这一轮完成后,重新随机选择S-1份来训练数据。若干轮(小于S)之后,选择损失函数评估最优的模型和参数。

  第三种是留一交叉验证(Leave-one-out Cross Validation),它是第二种情况的特例,此时S等于样本数N,这样对于N个样本,每次选择N-1个样本来训练数据,留一个样本来验证模型预测的好坏。此方法主要用于样本量非常少的情况,比如对于普通适中问题,N小于50时,我一般采用留一交叉验证。

1.模型调参利器GridSearchCV(网格搜索)

  GridSearchCV能够通过给定的参数列表,自动的帮我们选择一个最优的参数,在数据集不大的情况下非常适合使用。函数的相关参数的含义如下:

    GridSearchCV(estimatorparam_gridscoring=Nonefit_params=Nonen_jobs=1iid=Truerefit=Truecv=Noneverbose=0pre_dispatch='2*n_jobs'error_score='raise'return_train_score=True)

Parameters:

  estimator:所使用的分类器,或者pipeline

  param_grid:值为字典或者列表,即需要最优化的参数的取值

  scoring:准确度评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。

  n_jobs:并行数,int:个数,-1:跟CPU核数一致, 1:默认值。

  pre_dispatch:指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次

  iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。

  cv:交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。

  refit:默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。

  verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。

Attributes:
  best_estimator_:效果最好的分类器

  best_score_:成员提供优化过程期间观察到的最好的评分

  best_params_:描述了已取得最佳结果的参数的组合

  best_index_:对应于最佳候选参数设置的索引(cv_results_数组的索引)。

Methods:

  decision_function:使用找到的参数最好的分类器调用decision_function。

  fit(Xy=Nonegroups=None**fit_params):训练

  get_params(deep=True):获取这个估计器的参数。

  predict(X):用找到的最佳参数调用预估器。(直接预测每个样本属于哪一个类别)

  predict_log_proda(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分取log情况)

  predict_proba(X):用找到的最佳参数调用预估器。(得到每个测试集样本在每一个类别的得分情况)

  score(Xy=None):返回给定数据上的得分,如果预估器已经选出最优的分类器。

  transform(X):调用最优分类器进行对X的转换。

  下面我们一岭回归为例,运用GridSearchCV进行调参工作:

 import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Lasso, Ridge
from sklearn.model_selection import GridSearchCV if __name__ == "__main__":
# pandas读入
data = pd.read_csv('../data-set/Advertising.csv')
x = data[['TV', 'Radio', 'Newspaper']] y = data['Sales'] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1) #model = Lasso()
model = Ridge() alpha_can = np.logspace(-3, 2, 10)
lasso_model = GridSearchCV(model, param_grid={'alpha': alpha_can}, cv=5)
lasso_model.fit(x, y)
print('验证参数:\n', lasso_model.best_params_) y_hat = lasso_model.predict(np.array(x_test))
mse = np.average((y_hat - np.array(y_test)) ** 2) # Mean Squared Error
rmse = np.sqrt(mse) # Root Mean Squared Error
print(mse, rmse) t = np.arange(len(x_test))
plt.plot(t, y_test, 'r-', linewidth=2, label='Test')
plt.plot(t, y_hat, 'g-', linewidth=2, label='Predict')
plt.legend(loc='upper right')
plt.grid()
plt.show()

  在上述的代码中,np.logspace(-3, 2, 10)为返回10^-3到10^2的长度为默认10的列表,作为参数的可选值,lasso_model = GridSearchCV(model, param_grid={'alpha': alpha_can}, cv=5)中,param_grid自动参数alpha的参数列表,cv表示使用5折交叉验证。

运行结果如下:

欢迎关注我的公众号,不定期更新机器学习原理教程!

机器学习——交叉验证,GridSearchCV,岭回归的更多相关文章

  1. Numpy实现机器学习交叉验证的数据划分

    Numpy实现K折交叉验证的数据划分 本实例使用Numpy的数组切片语法,实现了K折交叉验证的数据划分 背景:K折交叉验证 为什么需要这个?在机器学习中,因为如下原因,使用K折交叉验证能更好评估模型效 ...

  2. 机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )

    案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表 ...

  3. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  4. 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归

    注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...

  5. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  6. GridSearchCV交叉验证

    代码实现(基于逻辑回归算法): # -*- coding: utf-8 -*- """ Created on Sat Sep 1 11:54:48 2018 @autho ...

  7. python机器学习sklearn 岭回归(Ridge、RidgeCV)

    1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量 ...

  8. 机器学习之五 正则化的线性回归-岭回归与Lasso回归

    机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基 ...

  9. 机器学习中的train valid test以及交叉验证

    转自 https://www.cnblogs.com/rainsoul/p/6373385.html 在以前的网络训练中,有关于验证集一直比较疑惑,在一些机器学习的教程中,都会提到,将数据集分为三部分 ...

随机推荐

  1. PHP引用符&的用法举例

    php的引用就是在变量或者函数.对象等前面加上&符号.在PHP 中引用的意思是:不同的名字访问同一个变量内容.与C语言中的指针是有差别的,C语言中的指针里面存储的是变量的内容在内存中存放的地址 ...

  2. I/O----复制文本文件

    文件 "我的青春谁做主.txt" 位于 D 盘根目录下,要求将此文件的内容复制到 C:/myPrime.txt 中. package io.day03; import java.i ...

  3. 【BZOJ 2004】: [Hnoi2010]Bus 公交线路

    题目链接: TP 题解:   所以说,超显眼的数据范围啊. 很显然我们对于每个P的区间都是要有k个站被bus停留,然后考虑转移的话应该是把这k个站里的某个bus往前走,那么转移也很显然了,n的范围很大 ...

  4. NOIP 2017 游记?

    Day -1 晚上被dg谈了谈人生,没有卵用 Day 0 早上又被老吕教训了一遍,想打板子,打印机还坏了,老吕又奶了一波题,后来发现一个都没中.之后就出发了,中午吃了点肯德基,妈妈来了,给我了个小袋子 ...

  5. bzoj 2829 计算几何

    将每张卡四个角的圆心跑graham出正常凸包,再加上一个圆就好了. 要注意先输入的是x,找点时三角函数瞎换就过了.. #include<cstdio> #include<cstrin ...

  6. Django基础三(form和template)

    上一篇博文学习了Django的View和urls,接下来是对django form 和 template的学习. 1 django form django form为我们提供了便捷的方式来创建一些HT ...

  7. 领域驱动设计学习之路—DDD的原则与实践

    本文是我学习Scott Millett & Nick Tune编著的<领域驱动设计模式.原理与实践>一书的学习笔记,一共会分为4个部分如下,此文为第1部分: ① 领域驱动设计的原则 ...

  8. Arthas

    Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱 下载&启动 wget https://alibaba.github.io/arthas/arthas-boot.jar 启 ...

  9. java游戏开发杂谈 - 线程

    线程,让游戏拥有了动态变化的能力. java的图形界面,在启动的时候,就开始了一个线程. 这个线程负责处理:JFrame.JPanel等的绘制.事件处理. 它是由操作系统调用的,在程序启动时开启,程序 ...

  10. Linux挖矿病毒 khugepageds详细解决步骤

    一.背景 最近公司一台虚拟机被攻击,其中一种挖矿病毒.会伪CPU数.即如果用top命令只能看到一个cpu.并且负载不高.实际上整个负载300%以上,及时定时任务关掉也不起作用. 二.言归正传开始干掉这 ...