动态点分治:Bzoj1095: [ZJOI2007]Hide 捉迷藏
简介
这是我自己的一点理解,可能写的不好
点分治都学过吧。。
点分治每次找重心把树重新按重心的深度重建成了一棵新的树,称为分治树
这个树最多有log层。。。
动态点分治:记录下每个重心的上一层重心,这棵分治树就确定了
修改就暴力在分治树中向上改,反正是log的
至于为什么叫动态点分治我不知道。。。我觉得就是点分治
做题时最主要的难点不在点分治,在于维护什么和怎样维护
例题
先搞出这个分治树,然后基本和点分治无关了
以下基于分治树
每个重心开两个堆
第一个堆记录子树中所有节点到重心的距离
第二个堆记录所有子节点的第一个堆的堆顶
那么一个节点的第二个堆堆中的最大值和次大值加起来就是子树中经过这个节点的最长链
然后开一个全局的堆,记录所有第二个堆中最大值和次大值之和
堆顶就是答案
修改就分治树中暴跳重心,大力讨论一番
代码和思路来自hzwer
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2e5 + 10);
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, nxt[_], to[_], fst[_], cnt, deep[_], size[_], frt[_], rt, mx[_], sz;
int eul[20][_], pw[20] = {1}, lg[_], id[_], tot;
bool cls[_], vis[_];
struct Heap{
priority_queue <int> A, B;
IL void Push(RG int x){ A.push(x); }
IL void Del(RG int x){ B.push(x); }
IL void Pop(){ while(!B.empty() && A.top() == B.top()) A.pop(), B.pop(); A.pop(); }
IL int Top(){ while(!B.empty() && A.top() == B.top()) A.pop(), B.pop(); return !A.empty() ? A.top() : 0; }
IL int Size(){ return A.size() - B.size(); }
IL int _Top(){ if(Size() < 2) return 0; RG int x = Top(); Pop(); RG int y = Top(); Push(x); return y; }
} A, B[_], C[_];
IL void Add(RG int u, RG int v){ to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++; }
/***********************************建立分治树***************************************/
IL void Getroot(RG int u, RG int ff){
size[u] = 1; mx[u] = 0;
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(to[e] == ff || vis[to[e]]) continue;
Getroot(to[e], u);
size[u] += size[to[e]];
mx[u] = max(mx[u], size[to[e]]);
}
mx[u] = max(mx[u], sz - size[u]);
if(mx[u] < mx[rt]) rt = u;
}
IL void Create(RG int u, RG int ff){
frt[u] = ff; /*记录上层重心*/ vis[u] = 1;
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(vis[to[e]]) continue;
rt = 0; sz = size[to[e]];
Getroot(to[e], 0);
Create(rt, u);
}
}
/***********************************************************************************/
IL void Dfs(RG int u, RG int ff){
eul[0][++cnt] = deep[u]; id[u] = cnt;
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(to[e] == ff) continue;
deep[to[e]] = deep[u] + 1;
Dfs(to[e], u);
eul[0][++cnt] = deep[u];
}
}
IL int Query(RG int x, RG int y){
x = id[x]; y = id[y]; if(x > y) swap(x, y); RG int len = y - x + 1;
return min(eul[lg[len]][x], eul[lg[len]][y - pw[lg[len]] + 1]);
}
IL int MaxDis(RG int x, RG int y){ return deep[x] + deep[y] - 2 * Query(x, y); }
IL void Close(RG int x, RG int y){
if(x == y){
B[x].Push(0);
if(B[x].Size() == 2) A.Push(B[x].Top());
}
if(!frt[x]) return;
RG int ff = frt[x], dis = MaxDis(ff, y), tmp = C[x].Top(); C[x].Push(dis);
if(dis > tmp){
RG int mmx = B[ff].Top() + B[ff]._Top(), sszz = B[ff].Size();
if(tmp) B[ff].Del(tmp); B[ff].Push(dis);
RG int _mmx = B[ff].Top() + B[ff]._Top();
if(_mmx > mmx){
if(sszz >= 2) A.Del(mmx);
if(B[ff].Size() >= 2) A.Push(_mmx);
}
}
Close(ff, y);
}
IL void Open(RG int x, RG int y){
if(x == y){
if(B[x].Size() == 2) A.Del(B[x].Top());
B[x].Del(0);
}
if(!frt[x]) return;
RG int ff = frt[x], dis = MaxDis(ff, y), tmp = C[x].Top(); C[x].Del(dis);
if(dis == tmp){
RG int mmx = B[ff].Top() + B[ff]._Top(), sszz = B[ff].Size();
B[ff].Del(dis); if(C[x].Top()) B[ff].Push(C[x].Top());
RG int _mmx = B[ff].Top() + B[ff]._Top();
if(_mmx < mmx){
if(sszz >= 2) A.Del(mmx);
if(B[ff].Size() >= 2) A.Push(_mmx);
}
}
Open(ff, y);
}
int main(RG int argc, RG char* argv[]){
Fill(fst, -1); tot = sz = n = Read(); mx[0] = 2e9;
for(RG int i = 2; i < _; ++i) lg[i] = lg[i >> 1] + 1;
for(RG int i = 1; i < 20; ++i) pw[i] = pw[i - 1] << 1;
for(RG int i = 1, u, v; i < n; i++) u = Read(), v = Read(), Add(u, v), Add(v, u);
cnt = 0; Dfs(1, 0);
for(RG int i = 1; i <= lg[cnt]; ++i)
for(RG int j = 1; j + pw[i] - 1 <= cnt; ++j)
eul[i][j] = min(eul[i - 1][j], eul[i - 1][j + pw[i - 1]]);
Getroot(1, 0); Create(rt, 0);
for(RG int i = 1; i <= n; ++i) C[i].Push(0), cls[i] = 1, Close(i, i);
for(RG int Q = Read(); Q; --Q){
RG char op; RG int x; scanf(" %c", &op);
if(op == 'G'){
if(tot <= 1) printf("%d\n", tot - 1);
else printf("%d\n", A.Top());
}
else{
x = Read();
if(cls[x]) Open(x, x), --tot, cls[x] = 0;
else Close(x, x), ++tot, cls[x] = 1;
}
}
return 0;
}
动态点分治:Bzoj1095: [ZJOI2007]Hide 捉迷藏的更多相关文章
- [bzoj1095][ZJOI2007]Hide 捉迷藏 点分树,动态点分治
[bzoj1095][ZJOI2007]Hide 捉迷藏 2015年4月20日7,8876 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiaji ...
- BZOJ1095: [ZJOI2007]Hide 捉迷藏【动态点分治】
Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...
- BZOJ1095 [ZJOI2007]Hide 捉迷藏 动态点分治 堆
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ1095.html 题目传送门 - BZOJ1095 题意 有 N 个点,每一个点是黑色或者白色,一开始所 ...
- BZOJ1095 [ZJOI2007]Hide 捉迷藏 【动态点分治 + 堆】
题目链接 BZOJ1095 题解 传说中的动态点分治,一直不敢碰 今日一会,感觉其实并不艰涩难懂 考虑没有修改,如果不用树形dp的话,就得点分治 对于每个重心,我们会考虑其分治的子树内所有点到它的距离 ...
- 2019.01.10 bzoj1095: [ZJOI2007]Hide 捉迷藏(动态点分治)
传送门 蒟蒻真正意义上做的第一道动态点分治! 题意:给一棵最开始所有点都是黑点的树,支持把点的颜色变成从黑/白色变成白/黑色,问当前状态树上两个最远黑点的距离. 思路: 首先考虑不带修改一次点分治怎么 ...
- bzoj1095: [ZJOI2007]Hide 捉迷藏 动态点分治学习
好迷啊...感觉动态点分治就是个玄学,蜜汁把树的深度缩到logn (静态)点分治大概是递归的时候分类讨论: 1.答案经过当前点,暴力(雾)算 2.答案不经过当前点,继续递归 由于原树可以长的奇形怪状( ...
- BZOJ1095: [ZJOI2007]Hide 捉迷藏【线段树维护括号序列】【思维好题】
Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...
- bzoj千题计划245:bzoj1095: [ZJOI2007]Hide 捉迷藏
http://www.lydsy.com/JudgeOnline/problem.php?id=1095 查询最远点对,带修改 显然可以用动态点分治 对于每个点,维护两个堆 堆q1[x] 维护 点分树 ...
- BZOJ1095 [ZJOI2007]Hide 捉迷藏
动态树分治,用三个set分别维护每个重心到每一个子树的距离种类.每个重心所有子树的最大值和次大值.全局答案的最大值.复杂度O(nlogn^2) 代码 #include<cstdio> #i ...
随机推荐
- phpstorm使用之——常用快捷键
phpstorm使用之--常用快捷键 使用IDE的根本所在乃是为了提高工作效率. windows下phpstorm的快捷键 ctrl+shift+n查找文件 ctrl+shift+f 在一个目录里查找 ...
- CentOS 6下编译安装MySQL 5.6
一:卸载旧版本 使用下面的命令检查是否安装有MySQL Server rpm -qa | grep mysql 有的话通过下面的命令来卸载掉 rpm -e mysql //普通删除模式 rpm -e ...
- Linux系统软件安装的几种方式
Linux系统,一个文件能不能执行看的是有没有可执行权限x,不过真正的可执行文件是二进制文件(binary file),举例来说Linux上的c语言源码编写完后,通过gcc程序编译后就可以创建一个可执 ...
- Windows下Nginx的启动、停止等基本命令
在Windows下使用Nginx,我们需要掌握一些基本的操作命令,比如:启动.停止Nginx服务,重新载入Nginx等,下面我就进行一些简单的介绍. 1.启动: C:\server\nginx-1.0 ...
- Android浏览器访问java web的方法
以前自己也做过Android程序,可以和服务器通信,通过json来存取数据,当时是在APP中直接存取数据的,而这次我打算在手机浏览器中获得服务器传过来的Json参数,后来才发现其实很简单的,首先需要手 ...
- 关于springMVC中component-scan的问题以及springmvc.xml整理
关于springMVC中component-scan的问题以及springmvc.xml整理 一.component-scan问题和解决办法 最近在学习使用springMVC+myba ...
- iOS 点击屏幕空白区隐藏键盘方法
iOS开发中,经常要用到输入框,可默认情况下,输入框出来之后,除非点击键盘上面的“Done”或“Next”按钮才能将其隐藏.站在用户体验的角度上看,这种情况很不友好,尤其是不能突显苹果操作的便捷性. ...
- 基于Python的Flask的开发实战(第二节程序的基本结构)
1.初始化 所有的flask程序都必须创建一个程序实例 web服务器使用wsgi接口协议,把接收客户端的请求都转发给这个程序实例来进行处理.这个程序实例就是flask对象 from flask imp ...
- Array.reduce()学习
昨天遇到的一道题:1234567890 => 1,234,567,890 要求其实就是使用逗号做千分位将数字进行分隔. 当时没想到任何方法,但是以前看到过,印象很深刻,今天就找了一下. 看到其实 ...
- Linux PCI/PCI-E设备配置空间读取与修改
Linux PCI/PCI-E设备配置空间读取与修改 1 前言 PCI和PCI Express,是计算机常使用的一种高速总线.操作系统中的PCI/PCI-E设备驱动以及操作系统内核,都需要访问PCI及 ...