一、前述

提升是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中;如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boosting)提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型。

二、算法过程

给定输入向量X和输出变量Y组成的若干训练样本(X 1 ,Y 1 ),(X 2 ,Y 2 )......(X n ,Y n ),

目标是找到近似函数F(X),使得损失函数L(Y,F(X))的损失值最小。

L损失函数一般采用最小二乘损失函数或者绝对值损失函数

最优解为:

假定F(X)是一族最优基函数f i (X)的加权和:

以贪心算法的思想扩展得到Fm(X),求解最优f

以贪心法在每次选择最优基函数f时仍然困难,使用梯度下降的方法近似计算

给定常数函数F 0 (X)

计算残差

使用数据 计算拟合残差的基函数

 计算步长

更新模型(梯度的思想)

三、GDBT算法思想

GBDT由三部分构成:DT(Regression Decistion Tree)、GB(Gradient Boosting)和Shrinkage,由多棵决策树组成,所有树的结果累加起来就是最终结果
迭代决策树和随机森林的区别:
随机森林使用抽取不同的样本构建不同的子树,也就是说第m棵树的构建和前m-1棵树的结果是没有关系的
迭代决策树在构建子树的时候,使用之前子树构建结果后形成的残差作为输入数据构建下一个子树;然后最终预测的时候按照子树构建的顺序进行预测,并将预测结果相加

【机器学习】--GBDT算法从初始到应用的更多相关文章

  1. 机器学习系列------1. GBDT算法的原理

    GBDT算法是一种监督学习算法.监督学习算法需要解决如下两个问题: 1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习排序算法:RankNet to LambdaRank to LambdaMART

    使用机器学习排序算法LambdaMART有一段时间了,但一直没有真正弄清楚算法中的所有细节. 学习过程中细读了两篇不错的博文,推荐给大家: 梯度提升树(GBDT)原理小结 徐博From RankNet ...

  4. GBDT算法简述

    提升决策树GBDT 梯度提升决策树算法是近年来被提及较多的一个算法,这主要得益于其算法的性能,以及该算法在各类数据挖掘以及机器学习比赛中的卓越表现,有很多人对GBDT算法进行了开源代码的开发,比较火的 ...

  5. [Machine Learning] 机器学习常见算法分类汇总

    声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...

  6. GBDT算法原理深入解析

    GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. 工业级GBDT算法︱微软开源 的LightGBM(R包正在开发....)

    看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果 ...

  9. GBDT 算法:原理篇

    本文由云+社区发表 GBDT 是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎. 这里简单介绍一下 GBDT 算法的原理,后续再写一个实战篇. 1.决策树的分类 决策树分为两大 ...

随机推荐

  1. ECMAScript 6 入门 ----Generator 函数

    本文转自:阮一峰老师的ECMAScript 6 入门,有时间可以看下评论! Generator 函数 简介 基本概念 Generator函数是ES6提供的一种异步编程解决方案,语法行为与传统函数完全不 ...

  2. 快速EDAS字体嵌入问题

    在用edas向国际会议投稿的时候,往往要检查pdf稿件的格式,例如页边距.行距.字体等.经常碰到的一个问题就是字体未嵌入到文件中.因为大家一般用CTex里面的ps2pdf生成pdf文件,图片中的字往往 ...

  3. 使用Spring MVC测试Spring Security Oauth2 API

    不是因为看到希望了才去坚持,而坚持了才知道没有希望. 前言 在Spring Security源码分析十一:Spring Security OAuth2整合JWT和Spring Boot 2.0 整合 ...

  4. BZOJ_1407_[Noi2002]Savage_EXGCD

    BZOJ_1407_[Noi2002]Savage_EXGCD Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数C ...

  5. Python数据结构应用2——Queue

    Reference: Problem Solving with Algorithms and Data Structures, Release 3.0 队列 Queue 建立 class Queue: ...

  6. 毕业样本=[威尔士大学毕业证书]UWIC原件一模一样证书

    威尔士大学毕业证[微/Q:2544033233◆WeChat:CC6669834]UC毕业证书/联系人Alice[查看点击百度快照查看][留信网学历认证&博士&硕士&海归&am ...

  7. 每日分享!JavaScript的鼠标事件(11个事件)

    鼠标的11个事件 具体的事件解释如下: click:按下鼠标(通常是按下主按钮)时触发. dblclick:在同一个元素上双击鼠标时触发. mousedown:按下鼠标键时触发. mouseup:释放 ...

  8. 使用Rotativa在ASP.NET Core MVC中创建PDF

    在本文中,我们将学习如何使用Rotativa.AspNetCore工具从ASP.NET Core中的视图创建PDF.如果您使用ASP.NET MVC,那么Rot​​ativa工具已经可用,我们可以使用 ...

  9. Java进阶篇设计模式之九----- 解释器模式和迭代器模式

    前言 在上一篇中我们学习了行为型模式的责任链模式(Chain of Responsibility Pattern)和命令模式(Command Pattern).本篇则来学习下行为型模式的两个模式, 解 ...

  10. 卷积神经网络之LeNet

    开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...