1.       Preparation

2.       A brief introduce to netCDF. 4

3.       Data Structure. 4

3.1   Attributes. 7

3.2   Dimensions. 8

3.3   Variables. 9

Classfication. 10

3.4   Groups. 11

4.       Source Code. 12

4.1   Get data from netCDF file. 12

4.2   Get subset data of specified variable. 13

Example 1: get the time series of a specified point (lon(11),lat(10))13

Example 2: get data of every point at time(0)14

4.3   Plot a figure

1. Preparation

Software: Matlab 2014a;

Used netCDF File: example.nc(containd in Matlab Install files), pres.tropp.2015.nc.

Instruction/Reference:

1. Matlab help documention

2. NetCDF User's Guide

https://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/

3. NetCDF Documentation

https://www.unidata.ucar.edu/software/netcdf/docs/index.html

2. A brief introduce to netCDF

NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF was developed and is maintained at Unidata. Unidata provides data and software tools for use in geoscience education and research.

Format

Model

Version

Released Year

Classic format

classic model

1.0~3.5

1989~2000

64-bit offset format

3.6

2004

netCDF-4 classic

model format

enhanced model

(netCDF-4 data model)

4.0

2008

 

netCDF-4 format

l  data represented with the classic model can also be represented using the enhanced model;

l  datasets that use features of the enhanced model, such as user-defined nested data types, cannot be represented with the classic model;

l  Evolution will continue the commitment to keep the Backwards Compatibility;

n  Backwards means the “previous” and Forwards means the “future”;

l  Knowledge of format details is not required to read or write netCDF datasets, unless you want to understand the performance issues related to disk or server access.

l  The netCDF reference library, developed and supported by Unidata, is written in C,with Fortran77, Fortran90, and C++ interfaces. A number of community and commercially supported interfaces to other languages are also available, including IDL, Matlab, Perl,Python, and Ruby. An independent implementation, also developed and supported by Unidata, is written entirely in Java.

3. Data Structure

By use of the “ncinfo” we can get the structure information of the data source. This information is store in the Workspace. You can also use “ncdisp” to display the contents of the netCDF file in the Command Window.

structure1 = ncinfo('example.nc');

structure2 = ncinfo('pres.tropp.2015.nc');

   

If we sort the data, we can get:

l  Filename: netCDF file name or URL.

l  Name: “/” indicating the full file

l  Format: the format of the netCDF file, see section 2.

l  Groups: An empty array([]) for all netCDF file format except netCDF-4 format.

3.1 Attributes

概述:File有attributes,variable有attributes;就近原则,描述自己。

NetCDF attributes are used to store data about the data (ancillary data or metadata(元数据,描述数据的数据)), we can call them Global Attributes.

Most attributes provide information about a specific variable. These are identified by the name (or ID) of that variable, together with the name of the attribute.

3.2 Dimensions

A dimension may be used to represent a real physical dimension, for example, time, latitude, longitude, or height. A dimension might also be used to index other quantities, for example station or People.

l  Name: the name of the dimension;

l  Length: number(sample) of values;

l  Unlimited: Boolean value. Indicates whether this dimension’s length is limited.

In a classic or 64-bit offset format dataset you can have at most one UNLIMITED dimension;

In a netCDF-4 format dataset, multiple UNLIMITED dimensions can be used.

3.3 Variables

When a variable is defined, its shape is specified as a list of dimensions. These dimensions must already exist.

A scalar has no dimension, a vector has one dimension and a matrix has 2 dimensions.

l  Dimensions: the same as “independent variables”.

l  Size: Like the matlab function “size” if the variable is matrix, like the matlab function “length” if the variable is verctor or scalar.

l  Attributes: see section 3.1

l  ChunkSize: specifying the size of one chunk. If the storage type specified is CONTIGUOUS it is “[]”.

l  Fillvalue:Specifies the value to the variable when no other value is specified and use of fill values has been enabled.

最后这两个参数和数据的压缩有关,若数据是压缩过的,则需要解压后才能够读取。不过这些都是由底层的APIs(interface)实现的,我们可以不用管它。

l  DeflateLevel:Scalar value between 0 and 9 specifying the amount of compression, where 0 is no compression and 9 is the most compression

l  Shuffle:Boolean value. True indicates the shuffle filter is enabled for this variable. The shuffle filter can assist with the compression of integer data by changing the byte order in the data stream.

Classfication

Class One: Coordinate variables

l  A variable with the same name as a dimension.

l  It typically defines a physical coordinate corresponding to that dimension.

n  So that you have alternative means of specifying position along the variable.

Index (C convention)

0

1

2

3

4

Index (Fortran convention)

1

2

3

4

5

physical coordinate (lat,lon,time etc.)

0

2.5

5

7.5

10

Matlab netCDF functions adopt C convention such that the counting starts from zero. Diagram below illustrates the actual index that we should use to extract the data using the Matlab functions.

http://www.public.asu.edu/~hhuang38/matlab_netcdf_guide.pdf

Class Two: Primary variables

l  This class can also be devied into two class:the Record variables and the others(just call it Fixed variables here)

Record variables: these variables has the unlimited dimension(like time), their size is variable.

Fixed variables: have a fixed size (number of data values) given by the product(叉乘、笛卡尔积) of its dimension lengths.

3.4 Groups

l  Starting with version 4.0, groups can help organize data within a dataset.

l  It’s not a type of data. Like a directory structure on a Unix file-system, the grouping feature allows users to organize variables and dimensions into distinct, named, hierarchical areas, called groups.

l  Here we use the file “example.nc” to demonstrate the groups’ structure

4. Source Code

After get know the file structure, we can extract the data of specific “variables”. Here illustrate the step of process.

Step 0: use function “ncinfo” or “ncdisp” to check the structure and information of the netCDF file; (this step is unnecessary if you have got known with the data.)

Step 1: Open the file;

Step 2: Extract data from specific “variables”;

Step 3: close the file;

4.1 Get data from netCDF file

% get information/structure data

struct = ncinfo('pres.tropp.2015.nc');

% open the file(pres.tropp.2015.nc) by Read-only access(NC_NOWRITE)

% ncid is a NetCDF file identifier

ncid = netcdf.open('pres.tropp.2015.nc','NC_NOWRITE');

% get variable ID(varid) by given its name(pres)

varid = netcdf.inqVarID(ncid,'pres');

% get data(pres_data) by specifying the variable ID(varid)

pres_data = netcdf.getVar(ncid,varid);

% clos the file

netcdf.close(ncid);

% clear defunct parameters, leave alone the data(pres_data)

clear ncidvarid

4.2 Get subset data of specified variable

The size of the “pres_data” matrix is 144×73×1460, what if I want to get the sub-matrix of “pres_data”?

Example 1: get the time series of a specified point (lon(11),lat(10))

ncid = netcdf.open('pres.tropp.2015.nc','NC_NOWRITE');

varid = netcdf.inqVarID(ncid,'pres');

series_data = netcdf.getVar(ncid,varid,[10,9,0],[1,1,1460]);

% "[10,9,0]" represent the start point (Again, remember that counting starts from zero.)

% "[1,1,1460]" specifies the amount of the data in each dimension.

% plot the data

% plot(series_data(:));

netcdf.close(ncid);

clear ncidvarid

series_data is still a 3-dimention matrix, and the first two dimentions’ length is 1. The relation between “series_data” and “pres_data” is below:

series_data(1,1,i) = pres_data(11,10,i),i=1,2,…,1460.

Example 2: get data of every point at time(0)

ncid = netcdf.open('pres.tropp.2015.nc','NC_NOWRITE');

varid = netcdf.inqVarID(ncid,'pres');

map_data = netcdf.getVar(ncid,varid,[0,0,0],[144,73,1]);

netcdf.close(ncid);

clear ncidvarid

 

map_data is a 2-dimention matrix. The relation between “map_data” and “pres_data” is below:

map_data(i,j) = pres_data(i,j,1),i=1,2,…,144;j=1,2,…,73

4.3 Plot a figure

% open the file

ncid = netcdf.open('pres.tropp.2015.nc','NC_NOWRITE');

% get data

map_data = netcdf.getVar(ncid,netcdf.inqVarID(ncid,'pres'),[0,0,0],[144,73,1]);

longitude = netcdf.getVar(ncid,netcdf.inqVarID(ncid,'lon'));

latitude = netcdf.getVar(ncid,netcdf.inqVarID(ncid,'lat'));

% Time = netcdf.getVar(ncid,netcdf.inqVarID(ncid,'time'));

% clos the file

netcdf.close(ncid);

% plot the data

map_data = map_data';  % map_data must be transposed(see below for details)

[x,y]=meshgrid(longitude,latitude);

pcolor(x,y,map_data);

colorbar('location','eastoutside');

shading interp;colormap parula

% clear defunct parameters

clear ncidxy

l  Be careful when you plot the figure, the 1st dimension of the “map_data” is longitude, same as row of the matrix.

l  The y-axis of the figure will be “longitude” if “map_dat” is not transposed.

A quike guide teaching you how to use matlab to read netCDF file and plot a figure的更多相关文章

  1. ZooKeeper Getting Started Guide

    http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html What is ZooKeeper? ZooKeeper is a centra ...

  2. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  3. GO语言的开源库

    Indexes and search engines These sites provide indexes and search engines for Go packages: godoc.org ...

  4. Android Lint Checks

    Android Lint Checks Here are the current list of checks that lint performs as of Android Studio 2.3 ...

  5. Matlab编程基础

    平台:Win7 64 bit,Matlab R2014a(8.3) “Matlab”是“Matrix Laboratory” 的缩写,中文“矩阵实验室”,是强大的数学工具.本文侧重于Matlab的编程 ...

  6. LaTeX插入图片方法 Inserting Images

    Inserting Images Images are essential elements in most of the scientific documents. LATEX provides s ...

  7. Machine Learning for hackers读书笔记(四)排序:智能收件箱

    #数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...

  8. 对于fmri的设计矩阵构造的一个很直观的解释-by 西南大学xulei教授

    本程序意在解释这样几个问题:完整版代码在本文的最后. 1.实验的设计如何转换成设计矩阵? 2.设计矩阵的每列表示一个刺激条件,如何确定它们? 3.如何根据设计矩阵和每个体素的信号求得该体素对刺激的敏感 ...

  9. Go语言(golang)开源项目大全

    转http://www.open-open.com/lib/view/open1396063913278.html内容目录Astronomy构建工具缓存云计算命令行选项解析器命令行工具压缩配置文件解析 ...

随机推荐

  1. 清除session信息

    session.removeAttribute("sessionname")是清除SESSION里的某个属性.     session.invalidate()是让SESSION失 ...

  2. uvalive 3602 DNA Consensus String

    https://vjudge.net/problem/UVALive-3602 题意: 给定m个长度均为n的DNA序列,求一个DNA序列,使得它到所有的DNA序列的汉明距离最短,若有多个解则输出字典序 ...

  3. Java-NIO(五):通道(Channel)的数据传输与内存映射文件

    通道(Channel)的数据传输(采用非直接缓冲区) @Test public void testChannel() throws IOException { FileInputStream file ...

  4. [转]map函数补充

    map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于li ...

  5. Lintcode375 Clone Binary Tree solution 题解

    [题目描述] For the given binary tree, return a deep copy of it. 深度复制一个二叉树,给定一个二叉树,返回一个他的克隆品. [题目链接] www. ...

  6. 完成 bass 库的频谱显示效果图

    效果如图所示,比 bass 官方自带的例子效果要好那么一点点(峰值有滞留)...

  7. [LeetCode] Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  8. python入门编程之三级菜单编程

    菜单实现功能输入一层显示下一层菜单不论在哪层输入b返回上一层不论在哪层输入q退出菜单此代码通过利用字典的知识可以实现_Author_ = 'jc'data = { '北京':{ '昌平':{ '沙河' ...

  9. Java8-Collect收集Stream

    Collection, Collections, collect, Collector, Collectos Collection是Java集合的祖先接口. Collections是java.util ...

  10. codeforces 651C Watchmen

    Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn t ...